Evaluation of LES, IDDES and URANS for prediction of flow around a streamlined high-speed train

分离涡模拟 唤醒 湍流 机械 流量(数学) 大涡模拟 雷诺平均Navier-Stokes方程 雷诺数 计算流体力学 气象学 物理 海洋工程 工程类
作者
Kan He,Xinchao Su,Mingyang Liu,Sinisa Krajnovic
出处
期刊:Journal of Wind Engineering and Industrial Aerodynamics [Elsevier]
卷期号:223: 104952-104952 被引量:11
标识
DOI:10.1016/j.jweia.2022.104952
摘要

The turbulent flow past a simplified Intercity-Express 3 high-speed train at ReH=6×104 is investigated by a combination of wind tunnel experiments and numerical simulations using the large-eddy simulation (LES), the improved delayed detached eddy simulation (IDDES) and the unsteady Reynolds-averaged Navier-Stokes (URANS) simulation. This work aims to compare the predictive capabilities of LES, IDDES and URANS for the flow over a streamlined high-speed train. Numerical simulations are compared to experimental data for validation. Results show that the well-resolved LES is more accurate among the numerical methods used. Compared to the well-resolved LES, IDDES and URANS using the coarser mesh can produce similar mean flow, although IDDES and URANS are found to be slightly inaccurate for the coherent wake structures near the wall. However, for the near-wall flow instability concerning wake dynamics, Reynolds stresses, turbulence kinetic energy and the fluctuation of pressure, IDDES is found to be inapplicable. Overall, this study suggests that the well-resolved LES is appropriate to the flow of a streamlined high-speed train. Moreover, IDDES and URANS are proved to apply to the mean field of the studied flow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
耿耿完成签到,获得积分10
1秒前
harrision发布了新的文献求助10
2秒前
3秒前
耿耿发布了新的文献求助10
5秒前
6秒前
7秒前
赘婿应助DAJI采纳,获得10
9秒前
初之完成签到,获得积分20
10秒前
哈哈哈哈hug完成签到,获得积分10
11秒前
smile发布了新的文献求助10
11秒前
SciGPT应助撒西不理采纳,获得10
13秒前
angelcynthia完成签到,获得积分10
14秒前
阳阳阳完成签到 ,获得积分10
15秒前
15秒前
15秒前
bkagyin应助无限平凡采纳,获得10
16秒前
ding应助无限平凡采纳,获得10
16秒前
传奇3应助无限平凡采纳,获得10
16秒前
在水一方应助无限平凡采纳,获得10
16秒前
研友_VZG7GZ应助无限平凡采纳,获得10
16秒前
Akim应助无限平凡采纳,获得10
16秒前
桐桐应助无限平凡采纳,获得10
16秒前
SciGPT应助无限平凡采纳,获得10
16秒前
完美世界应助无限平凡采纳,获得10
16秒前
小马菜菜完成签到,获得积分10
17秒前
jevon应助慈祥的翠桃采纳,获得10
18秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
jevon应助慈祥的翠桃采纳,获得10
19秒前
orixero应助易笙采纳,获得10
20秒前
20秒前
sims发布了新的文献求助10
20秒前
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3237670
求助须知:如何正确求助?哪些是违规求助? 2883256
关于积分的说明 8229423
捐赠科研通 2551416
什么是DOI,文献DOI怎么找? 1379746
科研通“疑难数据库(出版商)”最低求助积分说明 648845
邀请新用户注册赠送积分活动 624502