Corrosion Resistance Properties of Cu-Sn Electrodeposits from Cyanide-Free Bath

合金 材料科学 冶金 腐蚀 氰化物 图层(电子) 复合材料
作者
Toshihiro Nakamura,Yoshiki Konno,Takayo Yamamoto,Tomio Nagayama
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (22): 1668-1668
标识
DOI:10.1149/ma2016-02/22/1668
摘要

Cu-Sn alloy is widely known and frequently used to avoid nickel in many decorative, and electronic applications such as connector and terminal. Electrodeposition of Cu-Sn alloys from electrolytes containing uncomplexed, divalent metal ions is difficult because of the large difference in the standard electrode potentials of Cu, 0.340 V and Sn, -0.138 V. At present, Cu-Sn alloy is still plated commercially from cyanide baths, which causes environmental problems in the use and disposal of toxic cyanide. Recently, we demonstrated that silvery white Cu-Sn alloy electrodeposits (40-55mass%Sn), called “speculum alloy,” or “white bronze”. It has been investigated as an promising alternative to an allergenic nickel coating, can be obtained from environmental friendly cyanide-free sulfosuccinate bath [1]. Cu-Sn alloy deposits as an under layer restrained degradation of contact resistance, in particular, thin gold overlay on the Cu-Sn alloy deposits containing 40 to 55 mass% Sn, called “speculum alloy,” maintained a lower contact resistance during the salt spray test for prolonged periods [2]. In addition, gold thickness can be reduced by using the Cu-Sn alloy deposits as an undercoat has been reported [2]. In this study, crystalline structure and anodic property of Cu-Sn alloy electrodeposits were examined. These characteristic features might relate to the corrosion resistance and be important surface properties when using the Cu-Sn layer for the underplating. The Cu-Sn alloy deposits, speculum alloy(40 to 55 mass% Sn) exhibited better corrosion resistance than those of pure Cu, Sn and Ni. The Cu-Sn alloy electrodeposition carried out on copper substrate using sulfosuccinate electrolytes with additives at 1A/dm 2 . Bath composition were as follows: CuSO 4 (0.15mol/L), SnSO 4 (0.05mol/L), and HOOCCH 2 CH(SO 3 H)COOH (sulfosuccinic acid, 1.0 mol/L), L-methionine (0.4mol/L), and polyoxyethylene-α-naphthol (3g/L). The bath temperature was 298K and the bath pH was adjusted to pH0.5. The anode was Sn sheet. Fig1 shows XRD patterns of the Cu-Sn deposits obtained from the baths containing different concentration ratio of metal ions. According to the Cu-Sn phase diagram, the alloy of 40–55 mass% Sn generally consists of two phases, Cu 6 Sn 5 and Cu 3 Sn. On the other hand the diffraction peaks of Cu-40mass%Sn and Cu-47mass%Sn electrodeposits were assigned to only Cu 6 Sn 5 , and unknown peak(labeled* in Fig.1) near 42° was observed except the peaks derived from copper substrate. All the diffraction peaks of Cu-55mass%Sn electrodeposits was assigned to Cu 6 Sn 5 single-phase. The diffraction peaks of Cu-62mass%Sn or above were assigned to coexistence Cu 6 Sn 5 and β-Sn. Consequently, phase structure of the Cu-Sn alloy deposits containing 40 to 55 mass% Sn, called “speculum alloy,” which exhibited excellent corrosion resistance were identified mainly of Cu 6 Sn 5 . It might be related to the corrosion resistance. Figure 2 shows anodic polarization curves for the Cu-40mass%Sn layer obtained in diluted sulfuric acid (50 mmol/L H 2 SO 4 ) at 25°C. Electrode potential was measured with a Ag/AgCl (sat. KCl) reference electrode. Corrosion potential of Cu-40mass%Sn layer was less noble, -310mV vs. Ag/AgCl, than that of pure Cu and Ni. When polarized positively from the corrosion potentials, the Cu-40mass%Sn layer (almost Cu 6 Sn 5 phase) thoroughly passivated, whereas pure Cu, Sn and Ni readily dissolved anodically. Consequently, excellent corrosion resistance of thin gold overlay on the Cu-Sn speculum electrodeposits might be achieved by passivated film formed instantaneously on the Cu-Sn deposits. References [1] T. Nakamura, T. Nagayama, T. Yamamoto, Y. Mizutani, H.Nawafune, Mater. Sci. Forum., 654-656 , 1912(2010). [2] T. Nakamura, T. Yamamoto, T. Nagayama, Abst. 66th Ann. Meet. of ISE, s07-P-005 (2015). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
katarinabluu完成签到,获得积分10
1秒前
彭于晏应助leanne采纳,获得10
1秒前
我是老大应助明道若昧采纳,获得10
1秒前
sssyq发布了新的文献求助10
1秒前
着急的觅海完成签到,获得积分10
1秒前
2秒前
ylky发布了新的文献求助10
7秒前
科研通AI2S应助浮浮世世采纳,获得10
7秒前
传奇3应助华中科技大学采纳,获得10
7秒前
情怀应助WN采纳,获得10
8秒前
8秒前
11秒前
朴实山兰完成签到,获得积分10
13秒前
15秒前
SciGPT应助ylky采纳,获得10
15秒前
小爪冰凉发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
JamesPei应助科研小牛采纳,获得150
17秒前
Ava应助科研小牛采纳,获得10
17秒前
17秒前
忧郁盼夏发布了新的文献求助10
20秒前
marina关注了科研通微信公众号
20秒前
沐紫心完成签到 ,获得积分10
21秒前
科研通AI5应助suger采纳,获得10
21秒前
23秒前
八九发布了新的文献求助10
23秒前
26秒前
26秒前
一个好听的名字完成签到,获得积分10
27秒前
wbh发布了新的文献求助20
27秒前
27秒前
28秒前
Eddoes完成签到,获得积分10
28秒前
WN发布了新的文献求助10
29秒前
诚心的凌旋完成签到,获得积分10
29秒前
leanne发布了新的文献求助10
31秒前
机智思真完成签到,获得积分10
31秒前
32秒前
科研小牛完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173