计算机科学
集合(抽象数据类型)
语言模型
自然语言处理
人工智能
变量(数学)
分布(数学)
语言学
数据科学
数学
程序设计语言
哲学
数学分析
作者
Daniel Loureiro,Francesco Barbieri,Leonardo Neves,Luis Espinosa-Anke,José Camacho-Collados
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:15
标识
DOI:10.48550/arxiv.2202.03829
摘要
Despite its importance, the time variable has been largely neglected in the NLP and language model literature. In this paper, we present TimeLMs, a set of language models specialized on diachronic Twitter data. We show that a continual learning strategy contributes to enhancing Twitter-based language models' capacity to deal with future and out-of-distribution tweets, while making them competitive with standardized and more monolithic benchmarks. We also perform a number of qualitative analyses showing how they cope with trends and peaks in activity involving specific named entities or concept drift.
科研通智能强力驱动
Strongly Powered by AbleSci AI