已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Emerging Trends and Research Foci in Artificial Intelligence for Retinal Diseases: Bibliometric and Visualization Study

科学引文索引 引用 科学网 视网膜 可视化 计算机科学 人工智能 数据科学 医学 图书馆学 病理 荟萃分析 眼科
作者
Junqiang Zhao,Yi Lü,Yong Qian,Yuxin Luo,Weihua Yang
出处
期刊:Journal of Medical Internet Research 卷期号:24 (6): e37532-e37532 被引量:14
标识
DOI:10.2196/37532
摘要

Patients with retinal diseases may exhibit serious complications that cause severe visual impairment owing to a lack of awareness of retinal diseases and limited medical resources. Understanding how artificial intelligence (AI) is used to make predictions and perform relevant analyses is a very active area of research on retinal diseases. In this study, the relevant Science Citation Index (SCI) literature on the AI of retinal diseases published from 2012 to 2021 was integrated and analyzed.The aim of this study was to gain insights into the overall application of AI technology to the research of retinal diseases from set time and space dimensions.Citation data downloaded from the Web of Science Core Collection database for AI in retinal disease publications from January 1, 2012, to December 31, 2021, were considered for this analysis. Information retrieval was analyzed using the online analysis platforms of literature metrology: Bibliometrc, CiteSpace V, and VOSviewer.A total of 197 institutions from 86 countries contributed to relevant publications; China had the largest number and researchers from University College London had the highest H-index. The reference clusters of SCI papers were clustered into 12 categories. "Deep learning" was the cluster with the widest range of cocited references. The burst keywords represented the research frontiers in 2018-2021, which were "eye disease" and "enhancement."This study provides a systematic analysis method on the literature regarding AI in retinal diseases. Bibliometric analysis enabled obtaining results that were objective and comprehensive. In the future, high-quality retinal image-forming AI technology with strong stability and clinical applicability will continue to be encouraged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二十八化生完成签到 ,获得积分10
1秒前
yuaner发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
蜻蜓队长前来报道7完成签到,获得积分10
4秒前
小柒发布了新的文献求助10
5秒前
Blackmoon发布了新的文献求助30
6秒前
8秒前
应见惯发布了新的文献求助10
8秒前
宝儿姐完成签到,获得积分10
9秒前
mumu发布了新的文献求助10
11秒前
5866完成签到,获得积分10
11秒前
韶光与猫完成签到,获得积分10
13秒前
华仔应助yuaner采纳,获得10
14秒前
15秒前
15秒前
千寻完成签到,获得积分10
16秒前
桐桐应助dasdsa采纳,获得10
16秒前
CodeCraft应助薛定谔的猫采纳,获得10
17秒前
Sam发布了新的文献求助10
19秒前
鲤鱼冬灵完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
24秒前
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
oceanao应助科研通管家采纳,获得10
25秒前
Hayat应助科研通管家采纳,获得20
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
25秒前
喜悦的元龙完成签到,获得积分10
25秒前
25秒前
丘比特应助Wu小匠采纳,获得20
27秒前
27秒前
复杂的以亦应助岑广山采纳,获得10
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171230
求助须知:如何正确求助?哪些是违规求助? 2822135
关于积分的说明 7938200
捐赠科研通 2482633
什么是DOI,文献DOI怎么找? 1322678
科研通“疑难数据库(出版商)”最低求助积分说明 633676
版权声明 602627