On Reporting Performance and Accuracy Bugs for Deep Learning Frameworks: An Exploratory Study from GitHub

计算机科学 声誉 软件错误 探索性研究 人工智能 集合(抽象数据类型) 开源 数据科学 人口 深度学习 机器学习 软件 社会学 人类学 程序设计语言 社会科学 人口学
作者
Guoming Long,Tao Chen
标识
DOI:10.1145/3530019.3530029
摘要

The tremendous success of Deep Learning (DL) has significantly boosted the number of open-sourced DL frameworks hosted on GitHub. Among others, performance and accuracy bugs are critical factors that affect the reputation of these DL frameworks, therefore understanding the practice of discovering and investigating them for DL is important. In this paper, we conduct an exploratory study on the nature of reporting performance and accuracy bugs for DL frameworks, aiming to improve our knowledge on this topic. Our study covers 10 most popular open-sourced DL frameworks on GitHub (e.g., TensorFlow, Keras, and PyTorch), based on which we sample 664 representative performance and accuracy bug reports out of a total population of 22,522. Through systematic analysis, we found that: (1) low speed is the primary reason that a performance bug related report is submitted but we see no consistent pattern for accuracy related ones; (2) most of the reports are about issues encountered in the training stage; (3) only a small proportion of the reports provide insufficient information to investigate; (4) the majority of the performance and accuracy bug reports (from 69% to 100%) are not related to the actual bug or regarded as unclassified; (5) around 50% of the performance and accuracy bug reports, which indeed reveal bugs, are not resolved by direct patches. Deriving from the above, we discuss a set of actionable implications to the researchers, maintainers, and report submitters. To promote open science, the labeled dataset has been made publicly available at https://zenodo.org/record/6371676 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献求助发布了新的文献求助10
刚刚
iu发布了新的文献求助10
1秒前
沧海君发布了新的文献求助10
1秒前
2秒前
坐以待毕关注了科研通微信公众号
2秒前
xiaoyu发布了新的文献求助10
3秒前
清爽难敌完成签到 ,获得积分10
3秒前
工大搬砖战神完成签到,获得积分10
3秒前
SciGPT应助勿奈何采纳,获得10
4秒前
WL关闭了WL文献求助
4秒前
4秒前
6秒前
义气萝卜头完成签到,获得积分10
7秒前
7秒前
深情安青应助张龙雨采纳,获得10
7秒前
爆米花应助毕业后就好了采纳,获得10
8秒前
8秒前
还没睡醒发布了新的文献求助10
8秒前
xueshufengbujue完成签到,获得积分10
9秒前
9秒前
JamesPei应助Magician采纳,获得10
10秒前
高大黄蜂发布了新的文献求助10
11秒前
宇月幸成发布了新的文献求助10
13秒前
wanci应助早日发文章采纳,获得10
13秒前
13秒前
14秒前
采鹿鸣完成签到,获得积分10
14秒前
NexusExplorer应助Dan采纳,获得10
15秒前
搞不好你们完成签到,获得积分10
15秒前
16秒前
善良的冰颜完成签到 ,获得积分10
16秒前
17秒前
17秒前
CC发布了新的文献求助10
17秒前
17秒前
18秒前
科研通AI5应助微微又潇潇采纳,获得10
18秒前
lfg发布了新的文献求助10
18秒前
乐乐应助xiaoyu采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944