亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MP33-08 DEEP LEARNING RENAL VOLUME ANALYSIS TO PREDICT LONG-TERM RENAL FUNCTION AFTER PARTIAL AND RADICAL NEPHRECTOMY

肾切除术 医学 肾功能 内科学
作者
Abhinav Khanna,Sharma Vp,Adriana Gregory,Christine M. Lohse,Harrison C. Gottlich,Theodora A. Potretzke,R. Houston Thompson,Stephen A. Boorjian,Bradley C. Leibovich,Timothy L. Kline,Aaron M. Potretzke
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:207 (Supplement 5)
标识
DOI:10.1097/ju.0000000000002587.08
摘要

You have accessJournal of UrologyCME1 May 2022MP33-08 DEEP LEARNING RENAL VOLUME ANALYSIS TO PREDICT LONG-TERM RENAL FUNCTION AFTER PARTIAL AND RADICAL NEPHRECTOMY Abhinav Khanna, Vidit Sharma, Adriana Gregory, Christine Lohse, Harrison C. Gottlich, Theodora Potretzke, R. Houston Thompson, Stephen A. Boorjian, Bradley Leibovich, Timothy Kline, and Aaron Potretzke Abhinav KhannaAbhinav Khanna More articles by this author , Vidit SharmaVidit Sharma More articles by this author , Adriana GregoryAdriana Gregory More articles by this author , Christine LohseChristine Lohse More articles by this author , Harrison C. GottlichHarrison C. Gottlich More articles by this author , Theodora PotretzkeTheodora Potretzke More articles by this author , R. Houston ThompsonR. Houston Thompson More articles by this author , Stephen A. BoorjianStephen A. Boorjian More articles by this author , Bradley LeibovichBradley Leibovich More articles by this author , Timothy KlineTimothy Kline More articles by this author , and Aaron PotretzkeAaron Potretzke More articles by this author View All Author Informationhttps://doi.org/10.1097/JU.0000000000002587.08AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: Post-operative renal function (PORF) following extirpative renal surgery is largely dependent upon pre-operative renal function and the amount of renal parenchyma spared. The latter is often difficult to quantify. Some authors have suggested that renal volume on cross-sectional imaging may correlate with PORF. However, the calculation of renal volume is resource-intensive and does not translate readily into clinical practice. We aim to develop a deep learning algorithm capable of automatically calculating renal volume based on pre-operative MRI images. METHODS: We identified patients undergoing partial nephrectomy (PN) or radical nephrectomy (RN) at our tertiary referral center with accessible pre-operative MRI images. We developed a novel deep learning algorithm using U-Net architecture to identify kidneys on T2-weighted MRI and quantify non-neoplastic renal parenchymal volume (RV). The cohort was divided into a 74/13/13% split of training/validation/test subsets. Model development was carried out using a 5-fold cross validation technique. An ensemble of the three best performing models on the training and validation subsets was implemented to generate a more robust prediction segmentation. The associations between height-normalized pre-operative RV and PORF were assessed using generalized linear mixed effect models, adjusted for known clinical factors associated with PORF (age, diabetes, preoperative eGFR, proteinuria, tumor size, time from surgery). RESULTS: MRI images from from 330 patients, including 208 PN and 122 RN were used to develop a deep learning algorithm with a final Dice coefficient of 0.93 and Jaccard index of 0.87 compared to manual segmentations (Figure 1). On unadjusted analyses, RV was associated with PORF following PN and RN (p <0.001 and p=0.008, respectively). When added to existing multivariable models to predict PORF, the associations between RV and PORF remained statistically significant (p <0.001 and p=0.05, respectively). CONCLUSIONS: Pre-operative non-neoplastic renal volume is associated with long-term renal function following PN and RN, even after adjusting for a previously validated clinical prediction model. We developed a deep learning tool to facilitate automated RV assessment, which may promote integration of RV measurement into clinical practice. Source of Funding: None © 2022 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 207Issue Supplement 5May 2022Page: e572 Advertisement Copyright & Permissions© 2022 by American Urological Association Education and Research, Inc.MetricsAuthor Information Abhinav Khanna More articles by this author Vidit Sharma More articles by this author Adriana Gregory More articles by this author Christine Lohse More articles by this author Harrison C. Gottlich More articles by this author Theodora Potretzke More articles by this author R. Houston Thompson More articles by this author Stephen A. Boorjian More articles by this author Bradley Leibovich More articles by this author Timothy Kline More articles by this author Aaron Potretzke More articles by this author Expand All Advertisement PDF DownloadLoading ...

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助渟柠采纳,获得10
刚刚
asd发布了新的文献求助10
3秒前
淡漠完成签到 ,获得积分10
3秒前
samsijyu发布了新的文献求助10
9秒前
memory完成签到,获得积分10
11秒前
VDC发布了新的文献求助10
15秒前
陈梓锋完成签到 ,获得积分10
19秒前
22秒前
yyds完成签到,获得积分0
25秒前
asd完成签到 ,获得积分10
25秒前
26秒前
xlxu发布了新的文献求助10
29秒前
张萌发布了新的文献求助10
30秒前
34秒前
vida完成签到 ,获得积分10
35秒前
仰勒完成签到 ,获得积分10
38秒前
山川日月完成签到,获得积分10
38秒前
懒骨头兄发布了新的文献求助10
39秒前
猫猫祟完成签到 ,获得积分10
44秒前
点点点完成签到 ,获得积分10
50秒前
拼搏向上完成签到,获得积分10
50秒前
inyh59完成签到,获得积分10
51秒前
54秒前
刻苦的溪流完成签到,获得积分10
56秒前
56秒前
sofia发布了新的文献求助10
57秒前
大壮发布了新的文献求助10
59秒前
科目三应助inyh59采纳,获得10
1分钟前
shimly0101xx发布了新的文献求助10
1分钟前
xyy完成签到,获得积分20
1分钟前
Hello应助samsijyu采纳,获得10
1分钟前
Lulu完成签到 ,获得积分10
1分钟前
summer完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助cc采纳,获得10
1分钟前
透彻含义发布了新的文献求助10
1分钟前
科研通AI6应助无限猫咪采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049