亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MP33-08 DEEP LEARNING RENAL VOLUME ANALYSIS TO PREDICT LONG-TERM RENAL FUNCTION AFTER PARTIAL AND RADICAL NEPHRECTOMY

肾切除术 医学 肾功能 内科学
作者
Abhinav Khanna,Sharma Vp,Adriana Gregory,Christine M. Lohse,Harrison C. Gottlich,Theodora A. Potretzke,R. Houston Thompson,Stephen A. Boorjian,Bradley C. Leibovich,Timothy L. Kline,Aaron M. Potretzke
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:207 (Supplement 5)
标识
DOI:10.1097/ju.0000000000002587.08
摘要

You have accessJournal of UrologyCME1 May 2022MP33-08 DEEP LEARNING RENAL VOLUME ANALYSIS TO PREDICT LONG-TERM RENAL FUNCTION AFTER PARTIAL AND RADICAL NEPHRECTOMY Abhinav Khanna, Vidit Sharma, Adriana Gregory, Christine Lohse, Harrison C. Gottlich, Theodora Potretzke, R. Houston Thompson, Stephen A. Boorjian, Bradley Leibovich, Timothy Kline, and Aaron Potretzke Abhinav KhannaAbhinav Khanna More articles by this author , Vidit SharmaVidit Sharma More articles by this author , Adriana GregoryAdriana Gregory More articles by this author , Christine LohseChristine Lohse More articles by this author , Harrison C. GottlichHarrison C. Gottlich More articles by this author , Theodora PotretzkeTheodora Potretzke More articles by this author , R. Houston ThompsonR. Houston Thompson More articles by this author , Stephen A. BoorjianStephen A. Boorjian More articles by this author , Bradley LeibovichBradley Leibovich More articles by this author , Timothy KlineTimothy Kline More articles by this author , and Aaron PotretzkeAaron Potretzke More articles by this author View All Author Informationhttps://doi.org/10.1097/JU.0000000000002587.08AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: Post-operative renal function (PORF) following extirpative renal surgery is largely dependent upon pre-operative renal function and the amount of renal parenchyma spared. The latter is often difficult to quantify. Some authors have suggested that renal volume on cross-sectional imaging may correlate with PORF. However, the calculation of renal volume is resource-intensive and does not translate readily into clinical practice. We aim to develop a deep learning algorithm capable of automatically calculating renal volume based on pre-operative MRI images. METHODS: We identified patients undergoing partial nephrectomy (PN) or radical nephrectomy (RN) at our tertiary referral center with accessible pre-operative MRI images. We developed a novel deep learning algorithm using U-Net architecture to identify kidneys on T2-weighted MRI and quantify non-neoplastic renal parenchymal volume (RV). The cohort was divided into a 74/13/13% split of training/validation/test subsets. Model development was carried out using a 5-fold cross validation technique. An ensemble of the three best performing models on the training and validation subsets was implemented to generate a more robust prediction segmentation. The associations between height-normalized pre-operative RV and PORF were assessed using generalized linear mixed effect models, adjusted for known clinical factors associated with PORF (age, diabetes, preoperative eGFR, proteinuria, tumor size, time from surgery). RESULTS: MRI images from from 330 patients, including 208 PN and 122 RN were used to develop a deep learning algorithm with a final Dice coefficient of 0.93 and Jaccard index of 0.87 compared to manual segmentations (Figure 1). On unadjusted analyses, RV was associated with PORF following PN and RN (p <0.001 and p=0.008, respectively). When added to existing multivariable models to predict PORF, the associations between RV and PORF remained statistically significant (p <0.001 and p=0.05, respectively). CONCLUSIONS: Pre-operative non-neoplastic renal volume is associated with long-term renal function following PN and RN, even after adjusting for a previously validated clinical prediction model. We developed a deep learning tool to facilitate automated RV assessment, which may promote integration of RV measurement into clinical practice. Source of Funding: None © 2022 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetails Volume 207Issue Supplement 5May 2022Page: e572 Advertisement Copyright & Permissions© 2022 by American Urological Association Education and Research, Inc.MetricsAuthor Information Abhinav Khanna More articles by this author Vidit Sharma More articles by this author Adriana Gregory More articles by this author Christine Lohse More articles by this author Harrison C. Gottlich More articles by this author Theodora Potretzke More articles by this author R. Houston Thompson More articles by this author Stephen A. Boorjian More articles by this author Bradley Leibovich More articles by this author Timothy Kline More articles by this author Aaron Potretzke More articles by this author Expand All Advertisement PDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
apple发布了新的文献求助10
25秒前
27秒前
Conner完成签到 ,获得积分10
30秒前
39秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
xxx发布了新的文献求助10
43秒前
嵐酱布响堪论文完成签到,获得积分10
52秒前
Jessica完成签到,获得积分10
1分钟前
1分钟前
2分钟前
aa111发布了新的文献求助10
2分钟前
完美世界应助aa111采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
maher应助科研通管家采纳,获得30
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
2分钟前
科研启动发布了新的文献求助30
3分钟前
3分钟前
酷波er应助yahaahaaoo采纳,获得10
3分钟前
科研启动完成签到,获得积分10
3分钟前
科研通AI6应助xxx采纳,获得10
3分钟前
自信号厂完成签到 ,获得积分0
3分钟前
领导范儿应助nikuisi采纳,获得10
3分钟前
4分钟前
wew发布了新的文献求助10
4分钟前
4分钟前
朴素的山蝶完成签到 ,获得积分10
4分钟前
wangfaqing942完成签到 ,获得积分10
4分钟前
陌路人发布了新的文献求助10
4分钟前
ele_yuki完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221