亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-way group consensus decision based on hierarchical social network consisting of decision makers and participants

亲密度 计算机科学 决策分析 群体决策 社交网络(社会语言学) 决策问题 决策模型 人工智能 心理学 机器学习 社会心理学 社会化媒体 数学 统计 数学分析 万维网 程序设计语言
作者
Decui Liang,Yuanyuan Fu,Zeshui Xu
出处
期刊:Information Sciences [Elsevier]
卷期号:585: 289-312 被引量:33
标识
DOI:10.1016/j.ins.2021.11.057
摘要

In group decision making (GDM) of organization management, information interaction usually occurs via the hierarchical social networks. In the hierarchical social networks, the relation and opinion exchange between decision makers and participants can influence the consensus reaching of three-way group decision. In this paper, we deeply explore the three-way group decision consensus reaching by constructing adjustment mechanism based on the hierarchical social networks. In the hierarchical social network, we firstly learn the attitudes of participants for the opinions of decision makers. Inspired by the thought of three-way decision, we successfully identify the valid followers, hesitant followers and invalid follower of decision makers from the participants with the aid of the trust and consensus information. According to the character of followers, we compute the real influence of decision makers. Then, we discuss the consensus model. In the adjustment process of GDM of social network, the inconsistent decision makers tend to adjust evaluation based on the evaluation of the most influential decision makers. Thus, we introduce the maximum closeness degree between the inconsistent decision maker and the most influential decision maker to construct the minimum adjustment consensus model. Besides, we extend the minimum adjustment consensus model by considering the various unit cost and limited adjustment budget. In light of the consensual loss information and Bayesian decision theory, we determine the classification rules of three-way group decision. Finally, we use an example of the medical equipment selection of purchasing department to elaborate and validate our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hjygzv完成签到,获得积分10
3秒前
童心未泯发布了新的文献求助10
4秒前
缓存完成签到 ,获得积分10
8秒前
wanci应助万雨斌采纳,获得10
10秒前
典雅的太阳完成签到,获得积分10
11秒前
童心未泯完成签到,获得积分10
12秒前
tang完成签到,获得积分10
14秒前
17秒前
18秒前
21秒前
22秒前
万雨斌发布了新的文献求助10
23秒前
风起枫落完成签到,获得积分10
29秒前
毛豆应助清修采纳,获得10
34秒前
幽壑之潜蛟应助快乐飞丹采纳,获得10
36秒前
43秒前
嘎嘎好发布了新的文献求助10
46秒前
47秒前
w。完成签到 ,获得积分10
49秒前
wf发布了新的文献求助10
51秒前
完美世界应助dali采纳,获得10
54秒前
SYLH应助qwq采纳,获得10
59秒前
wupeilin0完成签到 ,获得积分10
1分钟前
Orange应助PrayOne采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
lwww应助科研通管家采纳,获得10
1分钟前
1分钟前
dali完成签到,获得积分20
1分钟前
dali发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小二郎完成签到 ,获得积分10
1分钟前
领导范儿应助wf采纳,获得10
1分钟前
ss完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
PrayOne发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387