Dose-weighted proton linear energy transfer map generation using a deep learning framework

计算机科学 能量(信号处理) 质子 人工智能 物理 数学 统计 核物理学
作者
Yuan Gao,Chih‐Wei Chang,Shaoyan Pan,Junbo Peng,Chaoqiong Ma,Pretesh Patel,Justin Roper,Jun Zhou,Xiaofeng Yang
标识
DOI:10.1117/12.3006962
摘要

The advantage of proton therapy over photon therapy lies in the Bragg peak effect, which allows protons to deposit most of their energy precisely at the tumor site, minimizing damage to surrounding healthy tissue. Despite this, the standard approach to clinical treatment planning does not fully consider the differences in biological effectiveness between protons and photons. Currently, a uniform Relative Biological Effectiveness (RBE) value of 1.1 is used in clinical settings to compare protons to photons, despite evidence that proton RBE can vary significantly. This variation underscores the need for more refined proton therapy treatment planning those accounts for the variable RBE. A critical parameter in assessing the RBE of proton therapy is the Dose-Average Linear Energy Transfer (LETd), which is instrumental in optimizing proton treatment plans. Accurate LETd distribution calculations require complex physical models and the implementation of sophisticated Monte-Carlo (MC) simulation software. These simulations are both computationally intensive and time-consuming. To address these challenges, we propose a Deep Learning (DL)-based framework aimed at predicting the LETd distribution map from the dose distribution map. This framework utilizes Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), and Normalized Cross Correlation (NCC) to measure discrepancies between MC-derived LETd and the LETd maps generated by our model. Our approach has shown promise in producing synthetic LETd maps from dose maps, potentially enhancing proton therapy planning through the provision of precise LETd information. This development could significantly contribute to more effective and individualized proton therapy treatments, optimizing therapeutic outcomes while further minimizing harm to healthy tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
楚岸发布了新的文献求助10
2秒前
阿强哥20241101完成签到,获得积分10
2秒前
TQY完成签到,获得积分10
3秒前
Khr1stINK发布了新的文献求助10
3秒前
宁静致远完成签到,获得积分10
3秒前
mxbyccbaby完成签到,获得积分10
4秒前
4秒前
楼寒天发布了新的文献求助30
4秒前
4秒前
jdmeme完成签到 ,获得积分10
5秒前
DVD完成签到 ,获得积分10
6秒前
学术嫪毐完成签到,获得积分10
6秒前
Xyyy发布了新的文献求助10
7秒前
uu完成签到,获得积分10
7秒前
小蘑菇应助赵赵赵采纳,获得10
7秒前
阿兹卡班狂徒完成签到 ,获得积分10
7秒前
7秒前
yuefeng发布了新的文献求助10
8秒前
澳臻白发布了新的文献求助10
8秒前
9秒前
刘大妮发布了新的文献求助10
9秒前
9秒前
王欧尼发布了新的文献求助10
10秒前
sooya关注了科研通微信公众号
10秒前
11秒前
11秒前
青木蓝发布了新的文献求助10
13秒前
852应助gaga采纳,获得10
13秒前
14秒前
14秒前
游尘发布了新的文献求助10
15秒前
bkagyin应助zhaowenxian采纳,获得10
15秒前
水电费第三方完成签到,获得积分20
16秒前
斯文败类应助lalala采纳,获得10
16秒前
小王爱看文献完成签到,获得积分10
17秒前
李明完成签到,获得积分10
17秒前
酷波er应助Khr1stINK采纳,获得10
18秒前
cora发布了新的文献求助10
18秒前
shelly0621发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794