摘要
Chapter 7 Crystallography, Design, and Synthesis of Two-Dimensional Metastable-Phase Oxides Mingwang Shao, Mingwang Shao Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this authorQi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Mingwang Shao, Mingwang Shao Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this authorQi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Book Editor(s):Qi Shao, Qi Shao Soochow University, Suzhou, ChinaSearch for more papers by this authorZhenhui Kang, Zhenhui Kang Soochow University, Suzhou, ChinaSearch for more papers by this authorMingwang Shao, Mingwang Shao Soochow University, Suzhou, ChinaSearch for more papers by this author First published: 05 April 2024 https://doi.org/10.1002/9783527839834.ch7 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter introduces crystallography, design, and synthesis of two-dimensional metastable-phase oxides. The prediction of 2D metastable-phase oxides is first introduced. The 2D metastable-phase oxides, such as noble metal oxides and non-noble metal oxides, are mainly summarized. The covalent bond behavior in metastable-phase 1T metal oxides is finally summarized. References Dang , Q. , Lin , H.P. , Fan , Z.L. et al. ( 2021 ). Iridium metallene oxide for acidic oxygen evolution catalysis . Nature Communications 12 ( 1 ): 6007 . 10.1038/s41467-021-26336-2 CASPubMedWeb of Science®Google Scholar Fan , Z.L. , Ji , Y.J. , Shao , Q. et al. ( 2021 ). Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide . Joule 5 ( 12 ): 3221 – 3234 . 10.1016/j.joule.2021.10.002 CASWeb of Science®Google Scholar Li , W.B. , Qian , X. , and Li , J. ( 2021 ). Phase transitions in 2D materials . Nature Reviews Materials 6 ( 9 ): 829 – 846 . 10.1038/s41578-021-00304-0 CASWeb of Science®Google Scholar Cheng , H.F. , Yang , N.L. , Lu , Q.P. et al. ( 2018 ). Syntheses and properties of metal nanomaterials with novel crystal phases . Advanced Materials 30 ( 26 ): 1707189 . 10.1002/adma.201707189 Web of Science®Google Scholar van der Ploeg , R. , Pureveen , J.B. , van den Boorn , S.H. , and van Bergen , P.F. ( 2023 ). Novel diamondoid-based maturity models using naturally occurring petroleum fluids . AAPG Bulletin 107 ( 10 ): 1799 – 1810 . 10.1306/06272323003 Google Scholar Im , S.W. , Ahn , H.Y. , Kim , R.M. et al. ( 2020 ). Chiral surface and geometry of metal nanocrystals . Advanced Materials 32 ( 41 ): 1905758 . 10.1002/adma.201905758 CASWeb of Science®Google Scholar Novoselov , K.S. , Geim , A.K. , Morozov , S.V. et al. ( 2005 ). Two-dimensional gas of massless Dirac fermions in graphene . Nature 438 ( 7065 ): 197 – 200 . 10.1038/nature04233 CASPubMedWeb of Science®Google Scholar Wu , W.Z. , Wang , L. , Li , Y.L. et al. ( 2014 ). Piezoelectricity of single-atomic-layer MoS 2 for energy conversion and piezotronics . Nature 514 ( 7523 ): 470 – 474 . 10.1038/nature13792 CASPubMedWeb of Science®Google Scholar Seyler , K.L. , Rivera , P. , Yu , H.Y. et al. ( 2019 ). Signatures of moire-trapped valley excitons in MoSe 2 /WSe 2 heterobilayers . Nature 567 ( 7746 ): 66 – 70 . 10.1038/s41586-019-0957-1 CASPubMedWeb of Science®Google Scholar Wang , Y. , Xiao , J. , Zhu , H.Y. et al. ( 2017 ). Structural phase transition in monolayer MoTe 2 driven by electrostatic doping . Nature 550 ( 7677 ): 487 – 491 . 10.1038/nature24043 CASPubMedWeb of Science®Google Scholar Gong , Y.J. , Lei , S.D. , Ye , G.L. et al. ( 2015 ). Two-step growth of two-dimensional WSe 2 /MoSe 2 heterostructures . Nano Letters 15 ( 9 ): 6135 – 6141 . 10.1021/acs.nanolett.5b02423 CASPubMedWeb of Science®Google Scholar Nag , A. , Raidongia , K. , Hembram , K.P.S.S. et al. ( 2010 ). Graphene analogues of BN: novel synthesis and properties . ACS Nano 4 ( 3 ): 1539 – 1544 . 10.1021/nn9018762 CASPubMedWeb of Science®Google Scholar Ong , W.J. , Tan , L.L. , Ng , Y.H. et al. ( 2016 ). Graphitic carbon nitride (g-C 3 N 4 )-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability . Chemical Reviews 116 ( 12 ): 7159 – 7329 . 10.1021/acs.chemrev.6b00075 CASPubMedWeb of Science®Google Scholar Sun , J. , Lee , H.W. , Pasta , M. et al. ( 2015 ). A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries . Nature Nanotechnology 10 ( 11 ): 980 – U184 . 10.1038/nnano.2015.194 CASPubMedWeb of Science®Google Scholar Mirr , P. , Audiffred , M. , and Heine , T. ( 2014 ). An atlas of two-dimensional materials . Chemical Society Reviews 43 ( 18 ): 6537 – 6554 . 10.1039/C4CS00102H PubMedGoogle Scholar Shirodkar , S.N. and Waghmare , U.V. ( 2014 ). Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS 2 . Physical Review Letters 112 ( 15 ): 157601 . 10.1103/PhysRevLett.112.157601 PubMedGoogle Scholar Gao , G.P. , Jiao , Y. , Ma , F.X. et al. ( 2015 ). Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T′ phase . Journal of Physical Chemistry C 119 ( 23 ): 13124 – 13128 . 10.1021/acs.jpcc.5b04658 CASWeb of Science®Google Scholar Varsano , D. , Palummo , M. , Molinari , E. , and Rontani , M. ( 2020 ). A monolayer transition-metal dichalcogenide as a topological excitonic insulator . Nature Nanotechnology 15 ( 5 ): 367 – 372 . 10.1038/s41565-020-0650-4 CASPubMedGoogle Scholar Carvalho , A. , Wang , M. , Zhu , X. et al. ( 2016 ). Phosphorene: from theory to applications . Nature Reviews Materials 1 ( 11 ): 16061 . 10.1038/natrevmats.2016.61 CASWeb of Science®Google Scholar Li , H. , Wu , J. , Yin , Z.Y. , and Zhang , H. ( 2014 ). Preparation and applications of mechanically exfoliated single-layer and multilayer MoS 2 and WSe 2 nanosheets . Accounts of Chemical Research 47 ( 4 ): 1067 – 1075 . 10.1021/ar4002312 CASPubMedWeb of Science®Google Scholar Zhang , S.L. , Guo , S.Y. , Chen , Z.F. et al. ( 2018 ). Recent progress in 2D group-VA semiconductors: from theory to experiment . Chemical Society Reviews 47 ( 3 ): 982 – 1021 . 10.1039/C7CS00125H CASPubMedWeb of Science®Google Scholar Bergeron , H. , Lebedev , D. , and Hersam , M.C. ( 2021 ). Polymorphism in post-dichalcogenide two-dimensional materials . Chemical Reviews 121 ( 4 ): 2713 – 2775 . 10.1021/acs.chemrev.0c00933 CASPubMedGoogle Scholar Cao , Y. , Fatemi , V. , Fang , S. et al. ( 2018 ). Unconventional superconductivity in magic-angle graphene superlattices . Nature 556 ( 7699 ): 43 – 50 . 10.1038/nature26160 CASPubMedWeb of Science®Google Scholar Chung , Y.J. , Rosales , K.A.V. , Baldwin , K.W. et al. ( 2021 ). Ultra-high-quality two-dimensional electron systems . Nature Materials 20 ( 5 ): 632 – 637 . 10.1038/s41563-021-00942-3 CASPubMedGoogle Scholar Nguyen , P.V. , Teutsch , N.C. , Wilson , N.P. et al. ( 2019 ). Visualizing electrostatic gating effects in two-dimensional heterostructures . Nature 572 ( 7768 ): 220 – 223 . 10.1038/s41586-019-1402-1 CASPubMedGoogle Scholar Akinwande , D. , Huyghebaert , C. , Wang , C.H. et al. ( 2019 ). Graphene and two-dimensional materials for silicon technology . Nature 573 ( 7775 ): 507 – 518 . 10.1038/s41586-019-1573-9 CASPubMedWeb of Science®Google Scholar Liu , J. , Liu , Y. , Liu , N.Y. et al. ( 2015 ). Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway . Science 347 ( 6225 ): 970 – 974 . 10.1126/science.aaa3145 CASPubMedWeb of Science®Google Scholar Schedin , F. , Geim , A.K. , Morozov , S.V. et al. ( 2007 ). Detection of individual gas molecules adsorbed on graphene . Nature Materials 6 ( 9 ): 652 – 655 . 10.1038/nmat1967 CASPubMedWeb of Science®Google Scholar Kang , M.G. , Jung , S.W. , Shin , W.J. et al. ( 2018 ). Holstein polaron in a valley-degenerate two-dimensional semiconductor . Nature Materials 17 ( 8 ): 676 – 680 . 10.1038/s41563-018-0092-7 CASPubMedGoogle Scholar Liu , C.J. , Yan , X. , Jin , D.F. et al. ( 2021 ). Two-dimensional superconductivity and anisotropic transport at KTaO 3 (111) interfaces . Science 371 ( 6530 ): 716 – 721 . 10.1126/science.aba5511 CASPubMedGoogle Scholar Bergeron , H. , Lebedev , D. , and Hersam , M.C. ( 2021 ). Polymorphism in post-dichalcogenide two-dimensional materials . Chemical Reviews 121 ( 4 ): 2713 – 2775 . 10.1021/acs.chemrev.0c00933 CASPubMedGoogle Scholar Lembke , D. , Bertolazzi , S. , and Kis , A. ( 2015 ). Single-layer MoS 2 electronics . Accounts of Chemical Research 48 ( 1 ): 100 – 110 . 10.1021/ar500274q CASPubMedGoogle Scholar Jaramillo , T.F. , Jorgensen , K.P. , Bonde , J. et al. ( 2007 ). Identification of active edge sites for electrochemical H 2 evolution from MoS 2 nanocatalysts . Science 317 ( 5834 ): 100 – 102 . 10.1126/science.1141483 CASPubMedWeb of Science®Google Scholar Hashimoto , A. , Suenaga , K. , Gloter , A. et al. ( 2004 ). Direct evidence for atomic defects in graphene layers . Nature 430 ( 7002 ): 870 – 873 . 10.1038/nature02817 CASPubMedWeb of Science®Google Scholar Dikin , D.A. , Stankovich , S. , Zimney , E.J. et al. ( 2007 ). Preparation and characterization of graphene oxide paper . Nature 448 ( 7152 ): 457 – 460 . 10.1038/nature06016 CASPubMedWeb of Science®Google Scholar Novoselov , K.S. , Geim , A.K. , Morozov , S.V. et al. ( 2005 ). Two-dimensional gas of massless Dirac fermions in graphene . Nature 438 ( 7065 ): 197 – 200 . 10.1038/nature04233 CASPubMedWeb of Science®Google Scholar Sokolikova , M.S. and Mattevi , C.D. ( 2020 ). Direct synthesis of metastable phases of 2D transition metal dichalcogenides . Chemical Society Reviews 49 ( 12 ): 3952 – 3980 . 10.1039/D0CS00143K CASPubMedWeb of Science®Google Scholar Mohammadi , A.V. , Rosen , J. , and Gogotsi , Y. ( 2021 ). The world of two-dimensional carbides and nitrides (MXenes) . Science 372 ( 6547 ): eabf1581 . 10.1126/science.abf1581 PubMedWeb of Science®Google Scholar Wang , H. , Li , J.M. , Li , K. et al. ( 2021 ). Transition metal nitrides for electrochemical energy applications . Chemical Society Reviews 50 ( 2 ): 1354 – 1390 . 10.1039/D0CS00415D CASPubMedWeb of Science®Google Scholar Deshmukh , K. , Kovarik , T. , and Pasha , S.K.K. ( 2020 ). State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review . Coordination Chemistry Reviews 424 : 213514 . 10.1016/j.ccr.2020.213514 Google Scholar Kim , K.K. , Lee , H.S. , and Lee , Y.H. ( 2018 ). Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics . Chemical Society Reviews 47 ( 16 ): 6342 – 6369 . 10.1039/C8CS00450A CASPubMedGoogle Scholar Chen , Y. , Lai , Z.C. , Zhang , X. et al. ( 2020 ). Phase engineering of nanomaterials . Nature Reviews Chemistry 4 ( 5 ): 269 . 10.1038/s41570-020-0184-1 PubMedGoogle Scholar Aslanov , L.A. , Fetisov , G.V. , Paseshnichenko , K.A. , and Dunaev , S.F. ( 2017 ). Liquid phase methods for design and engineering of two-dimensional nanocrystals . Coordination Chemistry Reviews 352 : 220 – 248 . 10.1016/j.ccr.2017.09.010 CASGoogle Scholar Rao , C.N.R. ( 1989 ). Transition metal oxides . Annual Review of Physical Chemistry 40 : 291 – 326 . 10.1146/annurev.pc.40.100189.001451 CASWeb of Science®Google Scholar Muetterties , E.L. and Wright , C.M. ( 1965 ). Chelate chemistry. III. chelates of high coordination number . Journal of the American Chemical Society 87 ( 21 ): 4706 – 4717 . 10.1021/ja00949a009 CASGoogle Scholar Chitnis , S.S. , Whalen , J.M. , and Burford , N. ( 2014 ). Influence of charge and coordination number on bond dissociation energies, distances, and vibrational frequencies for the phosphorus-phosphorus bond . Journal of the American Chemical Society 136 ( 35 ): 12498 – 12506 . 10.1021/ja507413s CASPubMedGoogle Scholar Yan , G. , Wahler , T. , Schuster , R. et al. ( 2019 ). Water on oxide surfaces: a triaqua surface coordination complex on Co 3 O 4 (111) . Journal of the American Chemical Society 141 ( 14 ): 5623 – 5627 . 10.1021/jacs.9b00898 CASPubMedGoogle Scholar Bruce , D.W. ( 1994 ). High coordination-number calamitic metallomesogens . Advanced Materials 6 ( 9 ): 699 – 701 . 10.1002/adma.19940060920 CASWeb of Science®Google Scholar Pauling , L. ( 1929 ). The principles determining the structure of complex ionic crystals . Journal of the American Chemical Society 51 ( 1-4 ): 1010 – 1026 . 10.1021/ja01379a006 CASGoogle Scholar Batzill , M. ( 2011 ). Fundamental aspects of surface engineering of transition metal oxide photocatalysts . Energy & Environmental Science 4 ( 9 ): 3275 – 3286 . 10.1039/c1ee01577j CASWeb of Science®Google Scholar Wang , Y. , Shao , M. , and Shao , Q. ( 2023 ). Understanding and prediction of metastable single-layer metallene oxides . Science China Materials 66 ( 8 ): 3361 – 3366 . 10.1007/s40843-023-2538-y Google Scholar Li , Y. , Li , Y.L. , Sa , B.S. , and Ahuja , R. ( 2017 ). Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective . Catalysis Science and Technology 7 ( 3 ): 545 – 559 . 10.1039/C6CY02178F CASGoogle Scholar Bergeron , H. , Lebedev , D. , and Hersam , M.C. ( 2021 ). Polymorphism in post-dichalcogenide two-dimensional materials . Chemical Reviews 121 ( 4 ): 2713 – 2775 . 10.1021/acs.chemrev.0c00933 CASPubMedGoogle Scholar Song , C.W. , Lim , J. , Bae , H.B. , and Chung , S.Y. ( 2020 ). Discovery of crystal structure–stability correlation in iridates for oxygen evolution electrocatalysis in acid . Energy & Environmental Science 13 ( 11 ): 4178 – 4188 . 10.1039/D0EE01389G CASWeb of Science®Google Scholar George , J. , Waroquiers , D. , Di Stefano , D. et al. ( 2020 ). The limited predictive power of the Pauling rules . Angewandte Chemie, International Edition 132 ( 19 ): 7569 – 7575 . 10.1002/anie.202000829 Google Scholar Shannon , R.D. ( 1976 ). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides . Acta Crystallographica. Section A 32 : 751 – 767 . 10.1107/S0567739476001551 CASGoogle Scholar Fan , Z.L. , Ji , Y.J. , Liao , F. et al. ( 2022 ). Unique coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H 2 -production . Nature Communications 13 ( 1 ): 5828 . 10.1038/s41467-022-33512-5 CASPubMedGoogle Scholar Liao , F. , Yin , K. , Ji , Y. et al. ( 2023 ). Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution . Nature Communications 14 ( 1 ): 1248 . 10.1038/s41467-023-36833-1 CASPubMedGoogle Scholar Xie , L.S. , Ren , X. , Liu , Q. et al. ( 2018 ). Ni(OH) 2 -PtO 2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution . Journal of Materials Chemistry A 6 ( 5 ): 1967 – 1970 . 10.1039/C7TA09990H CASGoogle Scholar Pan , R. , Wu , Y.C. , Wang , Q.P. , and Hong , Y. ( 2009 ). Preparation and catalytic properties of platinum dioxide nanoparticles: a comparison between conventional heating and microwave-assisted method . Chemical Engineering Journal 153 ( 1–3 ): 206 – 210 . 10.1016/j.cej.2009.06.009 CASGoogle Scholar Balaz , P. , Achimovicova , M. , Balaz , M. et al. ( 2013 ). Hallmarks of mechanochemistry: from nanoparticles to technology . Chemical Society Reviews 42 ( 18 ): 7571 – 7637 . 10.1039/c3cs35468g CASPubMedWeb of Science®Google Scholar Mohammed , H.A. , Dongho-Nguimdo , G.M. , and Joubert , D.P. ( 2021 ). Comprehensive first-principles study of bulk, bilayer, and monolayer α-PtO 2 properties . Physica E: Low-dimensional Systems and Nanostructures 127 : 114514 . 10.1016/j.physe.2020.114514 Google Scholar Range , K.J. , Rau , F. , Klement , U. , and Heyns , A.M. ( 1987 ). β-PtO 2 : high pressure synthesis of single crystals and structure refinement . Materials Research Bulletin 22 ( 11 ): 1541 – 1547 . 10.1016/0025-5408(87)90220-0 CASGoogle Scholar Kim , R. , Yang , B.J. , and Kim , C.H. ( 2019 ). Crystalline topological dirac semimetal phase in rutile structure β′− PtO 2 . Physical Review B 99 ( 4 ): 045130 . 10.1103/PhysRevB.99.045130 PubMedGoogle Scholar Yang , H. , Ji , Y.J. , Shao , Q. et al. ( 2023 ). Metastable-phase platinum oxide for clarifying the Pt–O active site for the hydrogen evolution reaction . Energy & Environmental Science 16 ( 2 ): 574 – 583 . 10.1039/D2EE03351H CASGoogle Scholar Kundu , M.K. , Mishra , R. , Bhowmik , T. , and Barman , S. ( 2018 ). Rhodium metal–rhodium oxide (Rh–Rh 2 O 3 ) nanostructures with Pt-like or better activity towards hydrogen evolution and oxidation reactions (HER, HOR) in acid and base: correlating its HOR/HER activity with hydrogen binding energy and oxophilicity of the catalyst . Journal of Materials Chemistry A 6 ( 46 ): 23531 – 23541 . 10.1039/C8TA07028H CASWeb of Science®Google Scholar Gao , J. , Shao , J.X. , Li , H. et al. ( 2023 ). Synergistic effect of carbon-deficient and Rh 2 O 3 -decorated on carbon nitride: Robust photocatalyst for bisphenol a degradation and the mechanism insight . Separation and Purification Technology 325 : 124670 . 10.1016/j.seppur.2023.124670 Google Scholar Yang , J.Q. , Han , W.J. , Jiang , B. et al. ( 2023 ). On the beneficial effect of Rh 2 O 3 modification of Sn doped NiO nanofibers for conductometric triethylamine gas sensing . Sensors and Actuators B: Chemical 382 : 133481 . 10.1016/j.snb.2023.133481 Google Scholar Musić , S. , Šarić , A. , Popović , S. , and Ivanda , M. ( 2009 ). Formation and characterisation of nanosize α-Rh 2 O 3 particles . Journal of Molecular Structure 924 : 221 – 224 . 10.1016/j.molstruc.2008.10.017 Google Scholar Demazeau , G. , Baranov , A. , Pöttgen , R. et al. ( 2006 ). An anhydrous high-pressure synthesis route to rutile type RhO 2 . Zeitschrift Fur Naturforschung Section B-A Journal of Chemical Sciences 61 ( 12 ): 1500 – 1506 . 10.1515/znb-2006-1206 CASGoogle Scholar Chen , H. , Shuang , H. , Lin , W.W. et al. ( 2021 ). Tuning interfacial electronic properties of palladium oxide on vacancy-abundant carbon nitride for low-temperature dehydrogenation . ACS Catalysis 11 ( 10 ): 6193 – 6199 . 10.1021/acscatal.1c00712 CASGoogle Scholar Murata , J. , Ueno , Y. , Yodogawa , K. , and Sugiura , T. ( 2016 ). Polymer/CeO 2 –Fe 3 O 4 multicomponent core–shell particles for high-efficiency magnetic-field-assisted polishing processes . International Journal of Machine Tools and Manufacture 101 : 28 – 34 . 10.1016/j.ijmachtools.2015.11.004 Web of Science®Google Scholar Matussin , S.N. , Harunsani , M.H. , and Khan , M.M. ( 2023 ). CeO 2 and CeO 2 -based nanomaterials for photocatalytic, antioxidant and antimicrobial activities . Journal of Rare Earths 41 ( 2 ): 167 – 181 . 10.1016/j.jre.2022.09.003 CASGoogle Scholar Bao , B.T. , Sun , Y.K. , Li , X.X. et al. ( 2023 ). Tuning the UV absorbing ability of CeO 2 nanoparticles with F−doping . FlatChem 39 : 100494 . 10.1016/j.flatc.2023.100494 Google Scholar Wang , B.Y. , Zhu , B. , Yun , S.N. et al. ( 2019 ). Fast ionic conduction in semiconductor CeO 2 -δ electrolyte fuel cells . NPG Asia Materials 11 ( 1 ): 51 . 10.1038/s41427-019-0152-8 Google Scholar Masui , T. , Ozaki , T. , Machida , K.I. , and Adachi , G.Y. ( 2000 ). Preparation of ceria–zirconia sub-catalysts for automotive exhaust cleaning . Journal of Alloys and Compounds 303 : 49 – 55 . 10.1016/S0925-8388(00)00603-4 Web of Science®Google Scholar Kleinlogel , C. and Gauckler , L.J. ( 2001 ). Sintering of nanocrystalline CeO 2 ceramics . Advanced Materials 13 ( 14 ): 1081 – 1085 . 10.1002/1521-4095(200107)13:14<1081::AID-ADMA1081>3.0.CO;2-D CASWeb of Science®Google Scholar Tamura , M. and Tomishige , K. ( 2015 ). Redox properties of CeO 2 at low temperature: the direct synthesis of imines from alcohol and amine . Angewandte Chemie, International Edition 54 ( 3 ): 864 – 867 . 10.1002/anie.201409601 CASPubMedWeb of Science®Google Scholar Koelling , D.D. , Boring , A.M. , and Wood , J.H. ( 1983 ). The electronic structure of CeO 2 and PrO 2 . Solid State Communications 47 ( 4 ): 227 – 232 . 10.1016/0038-1098(83)90550-1 CASWeb of Science®Google Scholar Liu , C. , Zheng , L.R. , Song , Q. et al. ( 2019 ). A metastable crystalline phase in two-dimensional metallic oxide nanoplates . Angewandte Chemie, International Edition 58 ( 7 ): 2055 – 2059 . 10.1002/anie.201812911 CASPubMedGoogle Scholar Bhopal , M.F. , Akbar , K. , Rehman , M.A. et al. ( 2017 ). High- K dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells . Carbon 125 : 56 – 62 . 10.1016/j.carbon.2017.09.038 CASWeb of Science®Google Scholar Hoffmann , M. , Pešić , M. , Chatterjee , K. et al. ( 2016 ). Direct observation of negative capacitance in polycrystalline ferroelectric HfO 2 . Advanced Functional Materials 26 ( 47 ): 8643 – 8649 . 10.1002/adfm.201602869 CASWeb of Science®Google Scholar Xu , X.H. , Huang , F.T. , Qi , Y.B. et al. ( 2021 ). Kinetically stabilized ferroelectricity in bulk single-crystalline HfO 2 :Y . Nature Materials 20 ( 6 ): 826 – 832 . 10.1038/s41563-020-00897-x CASPubMedGoogle Scholar Gilmer , D.C. , Hegde , R. , Cotton , R. et al. ( 2002 ). Compatibility of polycrystalline silicon gate deposition with HfO 2 and Al 2 O 3 /HfO 2 gate dielectrics . Applied Physics Letters 81 ( 7 ): 1288 – 1290 . 10.1063/1.1499514 CASGoogle Scholar Terki , R. , Bertrand , G. , Aourag , H. , and Coddet , C. ( 2008 ). Cubic-to-tetragonal phase transition of HfO 2 from computational study . Materials Letters 62 ( 10-11 ): 1484 – 1486 . 10.1016/j.matlet.2007.09.006 CASGoogle Scholar Zhang , H. , Feng , J.C. , Fei , T. et al. ( 2014 ). SnO 2 nanoparticles-reduced graphene oxide nanocomposites for NO 2 sensing at low operating temperature . Sensors and Actuators B: Chemical 190 : 472 – 478 . 10.1016/j.snb.2013.08.067 CASWeb of Science®Google Scholar Ke , W.J. , Fang , G.J. , Liu , Q. et al. ( 2015 ). Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells . Journal of the American Chemical Society 137 ( 21 ): 6730 – 6733 . 10.1021/jacs.5b01994 CASPubMedWeb of Science®Google Scholar Kim , J. , Kim , H.E. , and Lee , H. ( 2018 ). Single-atom catalysts of precious metals for electrochemical reactions . ChemSusChem 11 ( 1 ): 104 – 113 . 10.1002/cssc.201701306 CASPubMedWeb of Science®Google Scholar Jiang , B.B. , He , Y.J. , Li , B. et al. ( 2017 ). Polymer-templated formation of polydopamine-coated SnO 2 nanocrystals: anodes for cyclable lithium-ion batteries . Angewandte Chemie, International Edition 56 ( 7 ): 1869 – 1872 . 10.1002/anie.201611160 CASPubMedWeb of Science®Google Scholar Ren , X.D. , Yang , D. , Yang , Z. et al. ( 2017 ). Solution-processed Nb:SnO 2 electron transport layer for efficient planar perovskite solar cells . ACS Applied Materials & Interfaces 9 ( 3 ): 2421 – 2429 . 10.1021/acsami.6b13362 CASPubMedWeb of Science®Google Scholar Zhang , Y. , Wang , M. , Zhu , W.X. et al. ( 2023 ). Metastable hexagonal phase SnO 2 nanoribbons with active edge sites for efficient hydrogen peroxide electrosynthesis in neutral media . Angewandte Chemie, International Edition 62 ( 20 ): e202218924 . 10.1002/anie.202218924 Google Scholar Brown , I.D. and Shannon , R.D. ( 1973 ). Empirical bond-strength-bond-length curves for oxides . Acta Crystallographica. Section A 28 ( 1 ): S107 . Google Scholar O'Keeffe , M. and Navrotsky , A. ( 1981 ). Structure and Bonding in Crystals , vol. II . Academic Press . 10.1016/B978-0-12-525101-3.50019-X Google Scholar Fatar , S.F. , Demazeau , G. , Molller , M.H. , and Pottgen , R. ( 2011 ). Electronic structure and equation of state of PdO 2 from ab initio . Chemical Physics Letters 508 ( 4-6 ): 215 – 218 . 10.1016/j.cplett.2011.04.054 Google Scholar Metastable Materials: Synthesis, Characterization and Catalytic Applications ReferencesRelatedInformation