亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient complete denture metal base design via a dental feature-driven segmentation network

基础(拓扑) 计算机科学 特征(语言学) 分割 母材 人工智能 牙科 模式识别(心理学) 医学 材料科学 数学 冶金 焊接 语言学 数学分析 哲学
作者
Cheng Yu Li,Yaming Jin,Yunhan Du,Kaiyuan Luo,Luca Fiorenza,Hu Chen,Sukun Tian,Yuchun Sun
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:175: 108550-108550 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108550
摘要

Complete denture is a common restorative treatment in dental patients and the design of the core components (major connector and retentive mesh) of complete denture metal base (CDMB) is the basis of successful restoration. However, the automated design process of CDMB has become a challenging task primarily due to the complexity of manual interaction, low personalization, and low design accuracy. To solve the existing problems, we develop a computer-aided Segmentation Network-driven CDMB design framework, called CDMB-SegNet, to automatically generate personalized digital design boundaries for complete dentures of edentulous patients. Specifically, CDMB-SegNet consists of a novel upright-orientation adjustment module (UO-AM), a dental feature-driven segmentation network, and a specific boundary-optimization design module (BO-DM). UO-AM automatically identifies key points for locating spatial attitude of the three-dimensional dental model with arbitrary posture, while BO-DM can result in smoother and more personalized designs for complete denture. In addition, to achieve efficient and accurate feature extraction and segmentation of 3D edentulous models with irregular gingival tissues, the light-weight backbone network is also incorporated into CDMB-SegNet. Experimental results on a large clinical dataset showed that CDMB-SegNet can achieve superior performance over the state-of-the-art methods. Quantitative evaluation (major connector/retentive mesh) showed improved Accuracy (98.54 ± 0.58 %/97.73 ± 0.92 %) and IoU (87.42 ± 5.48 %/70.42 ± 7.95 %), and reduced Maximum Symmetric Surface Distance (4.54 ± 2.06 mm/4.62 ± 1.68 mm), Average Symmetric Surface Distance (1.45 ± 0.63mm/1.28 ± 0.54 mm), Roughness Rate (6.17 ± 1.40 %/6.80 ± 1.23 %) and Vertices Number (23.22 ± 1.85/43.15 ± 2.72). Moreover, CDMB-SegNet shortened the overall design time to around 4 min, which is one tenth of the comparison methods. CDMB-SegNet is the first intelligent neural network for automatic CDMB design driven by oral big data and dental features. The designed CDMB is able to couple with patient's personalized dental anatomical morphology, providing higher clinical applicability compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助徐小树采纳,获得10
33秒前
科研通AI5应助徐小树采纳,获得10
38秒前
39秒前
徐小树发布了新的文献求助10
45秒前
48秒前
49秒前
xbb88发布了新的文献求助10
53秒前
xbb88发布了新的文献求助10
53秒前
Akim应助科研通管家采纳,获得10
55秒前
丘比特应助科研通管家采纳,获得10
55秒前
tttttttttttt完成签到,获得积分20
55秒前
tttttttttttt关注了科研通微信公众号
1分钟前
1分钟前
徐小树发布了新的文献求助10
1分钟前
灵巧的大开完成签到,获得积分10
1分钟前
徐小树发布了新的文献求助10
1分钟前
Getlogger完成签到,获得积分10
1分钟前
2分钟前
Orange应助徐小树采纳,获得10
2分钟前
深情安青应助徐小树采纳,获得10
2分钟前
天天快乐应助徐小树采纳,获得10
2分钟前
华仔应助徐小树采纳,获得10
2分钟前
彭于晏应助徐小树采纳,获得10
2分钟前
科研通AI5应助徐小树采纳,获得10
2分钟前
领导范儿应助徐小树采纳,获得10
2分钟前
2分钟前
科研通AI2S应助徐小树采纳,获得10
2分钟前
FashionBoy应助徐小树采纳,获得10
2分钟前
华仔应助徐小树采纳,获得10
2分钟前
上官若男应助徐小树采纳,获得10
2分钟前
充电宝应助徐小树采纳,获得10
2分钟前
Ava应助徐小树采纳,获得10
2分钟前
慕青应助徐小树采纳,获得10
2分钟前
Jasper应助徐小树采纳,获得10
2分钟前
顾矜应助徐小树采纳,获得100
2分钟前
可爱的函函应助徐小树采纳,获得10
2分钟前
丘比特应助xbb88采纳,获得10
2分钟前
Maria完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
称心的火车完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968469
求助须知:如何正确求助?哪些是违规求助? 3513259
关于积分的说明 11167119
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794360
邀请新用户注册赠送积分活动 875027
科研通“疑难数据库(出版商)”最低求助积分说明 804629