Efficient complete denture metal base design via a dental feature-driven segmentation network

基础(拓扑) 计算机科学 特征(语言学) 分割 母材 人工智能 牙科 模式识别(心理学) 医学 材料科学 数学 冶金 数学分析 哲学 语言学 焊接
作者
Cheng Yu Li,Yaming Jin,Yunhan Du,Kaiyuan Luo,Luca Fiorenza,Hu Chen,Sukun Tian,Yuchun Sun
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:175: 108550-108550 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108550
摘要

Complete denture is a common restorative treatment in dental patients and the design of the core components (major connector and retentive mesh) of complete denture metal base (CDMB) is the basis of successful restoration. However, the automated design process of CDMB has become a challenging task primarily due to the complexity of manual interaction, low personalization, and low design accuracy. To solve the existing problems, we develop a computer-aided Segmentation Network-driven CDMB design framework, called CDMB-SegNet, to automatically generate personalized digital design boundaries for complete dentures of edentulous patients. Specifically, CDMB-SegNet consists of a novel upright-orientation adjustment module (UO-AM), a dental feature-driven segmentation network, and a specific boundary-optimization design module (BO-DM). UO-AM automatically identifies key points for locating spatial attitude of the three-dimensional dental model with arbitrary posture, while BO-DM can result in smoother and more personalized designs for complete denture. In addition, to achieve efficient and accurate feature extraction and segmentation of 3D edentulous models with irregular gingival tissues, the light-weight backbone network is also incorporated into CDMB-SegNet. Experimental results on a large clinical dataset showed that CDMB-SegNet can achieve superior performance over the state-of-the-art methods. Quantitative evaluation (major connector/retentive mesh) showed improved Accuracy (98.54 ± 0.58 %/97.73 ± 0.92 %) and IoU (87.42 ± 5.48 %/70.42 ± 7.95 %), and reduced Maximum Symmetric Surface Distance (4.54 ± 2.06 mm/4.62 ± 1.68 mm), Average Symmetric Surface Distance (1.45 ± 0.63mm/1.28 ± 0.54 mm), Roughness Rate (6.17 ± 1.40 %/6.80 ± 1.23 %) and Vertices Number (23.22 ± 1.85/43.15 ± 2.72). Moreover, CDMB-SegNet shortened the overall design time to around 4 min, which is one tenth of the comparison methods. CDMB-SegNet is the first intelligent neural network for automatic CDMB design driven by oral big data and dental features. The designed CDMB is able to couple with patient's personalized dental anatomical morphology, providing higher clinical applicability compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诗瑜发布了新的文献求助10
1秒前
SciGPT应助贺小刚采纳,获得10
1秒前
2秒前
张兔兔完成签到,获得积分10
4秒前
kyj完成签到,获得积分10
4秒前
倩倩发布了新的文献求助10
4秒前
一念之间发布了新的文献求助10
5秒前
6秒前
7秒前
huihuihui发布了新的文献求助10
7秒前
8秒前
1231发布了新的文献求助10
10秒前
neil_match完成签到,获得积分10
11秒前
11秒前
薰硝壤应助Sarah悦采纳,获得10
12秒前
悦悦完成签到,获得积分10
12秒前
Jx发布了新的文献求助10
12秒前
犹豫若云发布了新的文献求助10
14秒前
CDabin完成签到,获得积分10
15秒前
shweah2003完成签到,获得积分10
15秒前
科研通AI2S应助huihuihui采纳,获得10
16秒前
脆香可丽饼应助huihuihui采纳,获得10
16秒前
16秒前
倩倩完成签到 ,获得积分20
17秒前
想看不眠日记完成签到,获得积分10
17秒前
HongY完成签到,获得积分10
18秒前
21秒前
23秒前
24秒前
Leah发布了新的文献求助10
25秒前
1231完成签到,获得积分10
26秒前
上官若男应助戴先森采纳,获得10
26秒前
小潘哒完成签到 ,获得积分10
28秒前
Sarah悦完成签到,获得积分10
28秒前
大个应助悦悦采纳,获得10
29秒前
星辰大海应助徐佳乐采纳,获得10
30秒前
莞莞类卿发布了新的文献求助30
31秒前
贺小刚完成签到,获得积分10
32秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148072
求助须知:如何正确求助?哪些是违规求助? 2799096
关于积分的说明 7833514
捐赠科研通 2456285
什么是DOI,文献DOI怎么找? 1307194
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601655