Wearable Piezoelectric Sensors Based on BaTiO3 Films for Sarcopenia Recognition

可穿戴计算机 压电 肌萎缩 材料科学 可穿戴技术 计算机科学 复合材料 嵌入式系统 医学 解剖
作者
Shulang Han,Qinghao Zeng,Liang Ying,Qing Xiao,Yu Chen,Fei Yan,Yan Xiong,Jirong Yue,Xiaobao Tian
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:9 (12) 被引量:2
标识
DOI:10.1002/admt.202302172
摘要

Abstract Sarcopenia recognition is very crucial in the early diagnosis of sarcopenia. However, the commonly used screening methods are limited by real‐time property, portability, and convenient usability at home. Herein, an electrospun BaTiO 3 film is proposed and a piezoelectric sensor with silver electrodes and polyimide substrates is fabricated. The sensor exhibits high piezoelectricity (74.2 pC N −1 ), sensitivity, linearity, low detection limit (0.2 mN), and significant bending ability (bending angle can exceed 90°), maintaining stable output after more than 20 000 cycles during a week. Due to its excellent performance, the piezoelectric sensor to the recognition of sarcopenia is applied and a wearable system to collect piezoelectric signals from the lower limb movements of the elderly is developed. By selecting features from these signals, eight kinds of machine learning models are employed and their performances in recognizing sarcopenia are compared in both male and female groups. The results indicate that the artificial neural network (ANN) model has the highest performance, with accuracies of 92.9% in males and 98.1% in females. This piezoelectric sensor, combined with a wireless communication module, is expected to provide crucial evidence for sarcopenia detection, offering a new, convenient, and household screening solution for early diagnosis and prevention of sarcopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhx完成签到,获得积分10
刚刚
在水一方应助圣晟胜采纳,获得10
2秒前
希格斯玻色子完成签到,获得积分10
2秒前
5秒前
在人中发布了新的文献求助10
7秒前
小蘑菇应助学术地瓜采纳,获得10
7秒前
9秒前
苏苏发布了新的文献求助10
10秒前
胖蛋蛋蛋完成签到,获得积分10
14秒前
14秒前
热浪午后完成签到,获得积分10
16秒前
漂亮土豆完成签到,获得积分10
17秒前
19秒前
23秒前
wasiwan完成签到,获得积分10
23秒前
科研通AI2S应助圣晟胜采纳,获得10
24秒前
24秒前
长清发布了新的文献求助30
24秒前
彭于晏应助Jian采纳,获得20
24秒前
朴蒲萤荧完成签到,获得积分10
25秒前
文静紫霜完成签到 ,获得积分10
26秒前
xiang完成签到 ,获得积分10
26秒前
背后雨柏完成签到 ,获得积分10
29秒前
29秒前
30秒前
seata完成签到,获得积分10
31秒前
SCINEXUS应助科研通管家采纳,获得50
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
情怀应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
勿明应助科研通管家采纳,获得30
34秒前
共享精神应助科研通管家采纳,获得10
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
SCINEXUS应助科研通管家采纳,获得20
34秒前
传奇3应助科研通管家采纳,获得10
34秒前
SCINEXUS应助科研通管家采纳,获得20
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
胖胖猪完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849