亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-Channel Multiplex Graph Neural Networks for Recommendation

多路复用 对偶(语法数字) 图形 计算机科学 人工神经网络 人工智能 理论计算机科学 艺术 生物 生物信息学 文学类
作者
Xiang Li,Chaofan Fu,Zhongying Zhao,Guanjie Zheng,Chao Huang,Junyu Dong,Yanwei Yu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2403.11624
摘要

Efficient recommender systems play a crucial role in accurately capturing user and item attributes that mirror individual preferences. Some existing recommendation techniques have started to shift their focus towards modeling various types of interaction relations between users and items in real-world recommendation scenarios, such as clicks, marking favorites, and purchases on online shopping platforms. Nevertheless, these approaches still grapple with two significant shortcomings: (1) Insufficient modeling and exploitation of the impact of various behavior patterns formed by multiplex relations between users and items on representation learning, and (2) ignoring the effect of different relations in the behavior patterns on the target relation in recommender system scenarios. In this study, we introduce a novel recommendation framework, Dual-Channel Multiplex Graph Neural Network (DCMGNN), which addresses the aforementioned challenges. It incorporates an explicit behavior pattern representation learner to capture the behavior patterns composed of multiplex user-item interaction relations, and includes a relation chain representation learning and a relation chain-aware encoder to discover the impact of various auxiliary relations on the target relation, the dependencies between different relations, and mine the appropriate order of relations in a behavior pattern. Extensive experiments on three real-world datasets demonstrate that our \model surpasses various state-of-the-art recommendation methods. It outperforms the best baselines by 10.06\% and 12.15\% on average across all datasets in terms of R@10 and N@10 respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iman完成签到,获得积分10
1秒前
Panther完成签到,获得积分10
26秒前
2分钟前
2分钟前
y11发布了新的文献求助10
2分钟前
3分钟前
香蕉觅云应助y11采纳,获得10
3分钟前
3分钟前
3分钟前
小人物发布了新的文献求助10
3分钟前
打打应助小人物采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
X_L_iang发布了新的文献求助10
5分钟前
北落师门完成签到,获得积分10
6分钟前
6分钟前
领导范儿应助北落师门采纳,获得10
6分钟前
大雨完成签到,获得积分10
7分钟前
CipherSage应助X_L_iang采纳,获得10
7分钟前
stuuuuuuuuuuudy完成签到 ,获得积分10
8分钟前
不喝咖啡会死完成签到 ,获得积分10
8分钟前
8分钟前
9分钟前
9分钟前
李健应助从容的绮烟采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
10分钟前
搞怪的归尘完成签到,获得积分10
10分钟前
10分钟前
Nan发布了新的文献求助10
10分钟前
10分钟前
X_L_iang发布了新的文献求助10
10分钟前
10分钟前
科研通AI5应助Demi_Ming采纳,获得10
10分钟前
科研通AI5应助Nan采纳,获得10
10分钟前
11分钟前
研友_8Y26PL完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
13分钟前
小人物发布了新的文献求助10
13分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733402
求助须知:如何正确求助?哪些是违规求助? 3277618
关于积分的说明 10003493
捐赠科研通 2993646
什么是DOI,文献DOI怎么找? 1642785
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748926