Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models

医学 腺癌 放射科 二元分类 人工智能 肺孤立结节 肺癌筛查 试验装置 癌症 计算机断层摄影术 内科学 计算机科学 支持向量机
作者
Zhengsong Pan,Ge Hu,Zhenchen Zhu,Weixiong Tan,Wei Han,Z.‐G. Zhou,Wei Song,Yizhou Yu,Lan Song,Zhengyu Jin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:5
标识
DOI:10.1148/radiol.232057
摘要

Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs. Materials and Methods In this retrospective study, six ternary models for classifying preinvasive, minimally invasive, and invasive adenocarcinoma were developed using a multicenter data set of lung nodules. The DL-based models were progressively modified through framework optimization, joint learning, and an adjudication strategy (simulating a multireader approach to resolving discordant nodule classifications), integrating two binary classification models with a ternary classification model to resolve discordant classifications sequentially. The six ternary models were then tested on an external data set of pGGNs imaged between December 2019 and January 2021. Diagnostic performance including accuracy, specificity, and sensitivity was assessed. The χ2 test was used to compare model performance in different subgroups stratified by clinical confounders. Results A total of 4929 nodules from 4483 patients (mean age, 50.1 years ± 9.5 [SD]; 2806 female) were divided into training (n = 3384), validation (n = 579), and internal (n = 966) test sets. A total of 361 pGGNs from 281 patients (mean age, 55.2 years ± 11.1 [SD]; 186 female) formed the external test set. The proposed strategy improved DL model performance in external testing (P < .001). For classifying minimally invasive adenocarcinoma, the accuracy was 85% and 79%, sensitivity was 75% and 63%, and specificity was 89% and 85% for the model with adjudication (model 6) and the model without (model 3), respectively. Model 6 showed a relatively narrow range (maximum minus minimum) across diagnostic indexes (accuracy, 1.7%; sensitivity, 7.3%; specificity, 0.9%) compared with the other models (accuracy, 0.6%–10.8%; sensitivity, 14%–39.1%; specificity, 5.5%–17.9%). Conclusion Combining framework optimization, joint learning, and an adjudication approach improved DL classification of adenocarcinoma invasiveness at chest CT. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Sohn and Fields in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
camillelizhaohe完成签到,获得积分10
1秒前
科研通AI2S应助彭云峰采纳,获得10
1秒前
CodeCraft应助希勤采纳,获得10
3秒前
小白鼠发布了新的文献求助10
3秒前
ZYC发布了新的文献求助10
4秒前
4秒前
不配.应助123321采纳,获得10
5秒前
6秒前
月月完成签到,获得积分20
8秒前
苹果芙完成签到,获得积分10
10秒前
ding应助kai采纳,获得10
11秒前
耿耿完成签到 ,获得积分10
13秒前
13秒前
WJing完成签到,获得积分10
13秒前
李健应助dazhu采纳,获得10
15秒前
外向芫完成签到,获得积分10
16秒前
yangz发布了新的文献求助10
17秒前
18秒前
不配.应助畅快访蕊采纳,获得10
20秒前
21秒前
Lucky完成签到,获得积分10
22秒前
LL发布了新的文献求助10
22秒前
24秒前
syiimo完成签到 ,获得积分10
24秒前
27秒前
个性雅山完成签到,获得积分20
27秒前
31秒前
壮观的衫完成签到,获得积分10
31秒前
Mingzhu发布了新的文献求助10
33秒前
Akim应助Yingyli采纳,获得10
34秒前
JamesPei应助YI点半的飞机场采纳,获得10
35秒前
李健应助小田睡不醒采纳,获得10
35秒前
开放铅笔完成签到 ,获得积分10
35秒前
dazhu发布了新的文献求助10
36秒前
田様应助唠叨的嚓茶采纳,获得10
37秒前
大个应助Wenpandaen采纳,获得10
39秒前
freshman3005发布了新的文献求助30
40秒前
41秒前
41秒前
文艺的小海豚完成签到,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134930
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774244
捐赠科研通 2441682
什么是DOI,文献DOI怎么找? 1298076
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825