Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models

医学 腺癌 放射科 二元分类 人工智能 肺孤立结节 肺癌筛查 试验装置 癌症 计算机断层摄影术 内科学 计算机科学 支持向量机
作者
Zhengsong Pan,Ge Hu,Zhenchen Zhu,Weixiong Tan,Wei Han,Z.‐G. Zhou,Wei Song,Yizhou Yu,Lan Song,Zhengyu Jin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:12
标识
DOI:10.1148/radiol.232057
摘要

Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs. Materials and Methods In this retrospective study, six ternary models for classifying preinvasive, minimally invasive, and invasive adenocarcinoma were developed using a multicenter data set of lung nodules. The DL-based models were progressively modified through framework optimization, joint learning, and an adjudication strategy (simulating a multireader approach to resolving discordant nodule classifications), integrating two binary classification models with a ternary classification model to resolve discordant classifications sequentially. The six ternary models were then tested on an external data set of pGGNs imaged between December 2019 and January 2021. Diagnostic performance including accuracy, specificity, and sensitivity was assessed. The χ2 test was used to compare model performance in different subgroups stratified by clinical confounders. Results A total of 4929 nodules from 4483 patients (mean age, 50.1 years ± 9.5 [SD]; 2806 female) were divided into training (n = 3384), validation (n = 579), and internal (n = 966) test sets. A total of 361 pGGNs from 281 patients (mean age, 55.2 years ± 11.1 [SD]; 186 female) formed the external test set. The proposed strategy improved DL model performance in external testing (P < .001). For classifying minimally invasive adenocarcinoma, the accuracy was 85% and 79%, sensitivity was 75% and 63%, and specificity was 89% and 85% for the model with adjudication (model 6) and the model without (model 3), respectively. Model 6 showed a relatively narrow range (maximum minus minimum) across diagnostic indexes (accuracy, 1.7%; sensitivity, 7.3%; specificity, 0.9%) compared with the other models (accuracy, 0.6%–10.8%; sensitivity, 14%–39.1%; specificity, 5.5%–17.9%). Conclusion Combining framework optimization, joint learning, and an adjudication approach improved DL classification of adenocarcinoma invasiveness at chest CT. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Sohn and Fields in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Dabaozi采纳,获得10
刚刚
Rondab应助幽默的觅山采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
Rubby应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
无奈行恶应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
星辰大海应助怕黑蓝采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
1秒前
无奈行恶应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
小火锅完成签到 ,获得积分10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Rubby应助科研通管家采纳,获得10
1秒前
无奈行恶应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
风暴关注了科研通微信公众号
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
2秒前
wanwan应助芭拉芭拉叭采纳,获得10
4秒前
十二应助芭拉芭拉叭采纳,获得10
4秒前
炙热问薇发布了新的文献求助10
4秒前
赘婿应助出保函费采纳,获得10
5秒前
NexusExplorer应助舒适的亦凝采纳,获得10
5秒前
6秒前
6秒前
上好佳发布了新的文献求助10
6秒前
小邢完成签到,获得积分10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452