In silico insights into design of novel VEGFR-2 inhibitors: SMILES-based QSAR modelling, and docking studies on substituted benzo-fused heteronuclear derivatives

数量结构-活动关系 生物信息学 索拉非尼 对接(动物) 异核分子 化学 计算生物学 立体化学 计算机科学 计算化学 生物系统 组合化学 生物 核磁共振波谱 生物化学 医学 护理部 基因 癌症研究 肝细胞癌
作者
Satish C. Gupta,Mrinal Kashyap,Yogita Bansal,Gulshan Bansal
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:: 1-20
标识
DOI:10.1080/1062936x.2024.2332203
摘要

Eight QSAR models (M1–M8) were developed from a dataset of 118 benzo-fused heteronuclear derivatives targeting VEGFR-2 by Monte Carlo optimization method of CORALSEA 2023 software. Models were generated with hybrid optimal descriptors using both SMILES and Graphs with zero- and first-order Morgan extended connectivity index from a training set of 103 derivatives. All statistical parameters for model validation were within the prescribed limits, establishing the models to be robust and of excellent quality. Among all models, split-2 of M5 was the best-fit as reflected by rvalidation2, Qvalidation2 and MAE. Mechanistic interpretation of this model assisted the identification of structural descriptors as promoters and hinderers for VEGFR-2 inhibition. These descriptors were utilized to design novel VEGFR-2 inhibitors (YS01-YS07) by bringing modifications in compound MS90 in the dataset. Docking of all designed compounds, MS90 and sorafenib with VEGFR-2 binding site revealed favourable binding interactions. Docking score of YS07 was higher than that of MS90 and sorafenib. Molecular dynamics simulation study revealed sustained interactions of YS07 with key amino acids of VEGFR-2 at a run time of 100 ns. This study concludes the development of a best fit QSAR model which can assist the design of new anticancer agents targeting VEGFR-2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FIN发布了新的文献求助80
1秒前
1秒前
研友_8oBQ3Z完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
小左完成签到,获得积分10
3秒前
3秒前
务实的焦完成签到,获得积分10
4秒前
乐乐应助周国煌采纳,获得10
4秒前
熬夜波比应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
tiptip应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得30
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
tiptip应助科研通管家采纳,获得10
4秒前
熬夜波比应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
achen发布了新的文献求助10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
漆唐发布了新的文献求助10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得30
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105