亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In silico insights into design of novel VEGFR-2 inhibitors: SMILES-based QSAR modelling, and docking studies on substituted benzo-fused heteronuclear derivatives

数量结构-活动关系 生物信息学 索拉非尼 对接(动物) 异核分子 化学 计算生物学 立体化学 计算机科学 计算化学 生物系统 组合化学 生物 核磁共振波谱 生物化学 基因 护理部 医学 癌症研究 肝细胞癌
作者
Satish C. Gupta,Mrinal Kashyap,Yogita Bansal,Gulshan Bansal
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:: 1-20
标识
DOI:10.1080/1062936x.2024.2332203
摘要

Eight QSAR models (M1–M8) were developed from a dataset of 118 benzo-fused heteronuclear derivatives targeting VEGFR-2 by Monte Carlo optimization method of CORALSEA 2023 software. Models were generated with hybrid optimal descriptors using both SMILES and Graphs with zero- and first-order Morgan extended connectivity index from a training set of 103 derivatives. All statistical parameters for model validation were within the prescribed limits, establishing the models to be robust and of excellent quality. Among all models, split-2 of M5 was the best-fit as reflected by rvalidation2, Qvalidation2 and MAE. Mechanistic interpretation of this model assisted the identification of structural descriptors as promoters and hinderers for VEGFR-2 inhibition. These descriptors were utilized to design novel VEGFR-2 inhibitors (YS01-YS07) by bringing modifications in compound MS90 in the dataset. Docking of all designed compounds, MS90 and sorafenib with VEGFR-2 binding site revealed favourable binding interactions. Docking score of YS07 was higher than that of MS90 and sorafenib. Molecular dynamics simulation study revealed sustained interactions of YS07 with key amino acids of VEGFR-2 at a run time of 100 ns. This study concludes the development of a best fit QSAR model which can assist the design of new anticancer agents targeting VEGFR-2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
所所应助zhvjdb采纳,获得10
3秒前
4秒前
20秒前
24秒前
维颖发布了新的文献求助10
25秒前
科研通AI2S应助魏欣娜采纳,获得10
27秒前
30秒前
32秒前
浮浮世世发布了新的文献求助10
35秒前
36秒前
浮游应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
嘻嘻哈哈应助科研通管家采纳,获得10
39秒前
嘻嘻哈哈应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
Cast_Lappland发布了新的文献求助10
40秒前
46秒前
Cast_Lappland完成签到,获得积分10
46秒前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
可爱的函函应助早川采纳,获得10
1分钟前
馍夹菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Vivian发布了新的文献求助30
1分钟前
Fox完成签到,获得积分10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
维颖完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
zhvjdb发布了新的文献求助10
2分钟前
Raju发布了新的文献求助100
2分钟前
英姑应助lpy李采纳,获得10
2分钟前
2分钟前
zhvjdb完成签到,获得积分10
2分钟前
Yuuw发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430