In silico insights into design of novel VEGFR-2 inhibitors: SMILES-based QSAR modelling, and docking studies on substituted benzo-fused heteronuclear derivatives

数量结构-活动关系 生物信息学 索拉非尼 对接(动物) 异核分子 化学 计算生物学 立体化学 计算机科学 计算化学 生物系统 组合化学 生物 核磁共振波谱 生物化学 医学 护理部 基因 癌症研究 肝细胞癌
作者
Satish C. Gupta,Mrinal Kashyap,Yogita Bansal,Gulshan Bansal
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:: 1-20
标识
DOI:10.1080/1062936x.2024.2332203
摘要

Eight QSAR models (M1–M8) were developed from a dataset of 118 benzo-fused heteronuclear derivatives targeting VEGFR-2 by Monte Carlo optimization method of CORALSEA 2023 software. Models were generated with hybrid optimal descriptors using both SMILES and Graphs with zero- and first-order Morgan extended connectivity index from a training set of 103 derivatives. All statistical parameters for model validation were within the prescribed limits, establishing the models to be robust and of excellent quality. Among all models, split-2 of M5 was the best-fit as reflected by rvalidation2, Qvalidation2 and MAE. Mechanistic interpretation of this model assisted the identification of structural descriptors as promoters and hinderers for VEGFR-2 inhibition. These descriptors were utilized to design novel VEGFR-2 inhibitors (YS01-YS07) by bringing modifications in compound MS90 in the dataset. Docking of all designed compounds, MS90 and sorafenib with VEGFR-2 binding site revealed favourable binding interactions. Docking score of YS07 was higher than that of MS90 and sorafenib. Molecular dynamics simulation study revealed sustained interactions of YS07 with key amino acids of VEGFR-2 at a run time of 100 ns. This study concludes the development of a best fit QSAR model which can assist the design of new anticancer agents targeting VEGFR-2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
热依汗古丽完成签到,获得积分10
1秒前
HX发布了新的文献求助20
1秒前
2秒前
qian完成签到 ,获得积分10
3秒前
3秒前
Zzzzzzzzzzz发布了新的文献求助10
4秒前
4秒前
4秒前
典雅的果汁完成签到,获得积分20
6秒前
Laus完成签到,获得积分20
7秒前
搜集达人应助gzsy采纳,获得10
7秒前
俭朴夜雪发布了新的文献求助10
7秒前
Hello应助橙橙梨梨茶采纳,获得10
8秒前
认真的rain发布了新的文献求助50
9秒前
深情的鑫鹏完成签到,获得积分10
9秒前
寒涛先生发布了新的文献求助10
10秒前
空心发布了新的文献求助30
10秒前
希望天下0贩的0应助星星采纳,获得10
11秒前
krkr完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助111111111采纳,获得10
12秒前
12秒前
粗犷的书包完成签到,获得积分10
13秒前
Jasper应助shanbaibai采纳,获得10
13秒前
13秒前
Laus发布了新的文献求助10
16秒前
16秒前
cheung发布了新的文献求助10
16秒前
害羞向日葵完成签到 ,获得积分10
17秒前
ppp完成签到,获得积分10
18秒前
唠叨的白萱完成签到,获得积分10
19秒前
傲娇的凡旋完成签到,获得积分10
19秒前
fusheng完成签到 ,获得积分10
20秒前
20秒前
兔子完成签到,获得积分20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808