In silico insights into design of novel VEGFR-2 inhibitors: SMILES-based QSAR modelling, and docking studies on substituted benzo-fused heteronuclear derivatives

数量结构-活动关系 生物信息学 索拉非尼 对接(动物) 异核分子 化学 计算生物学 立体化学 计算机科学 计算化学 生物系统 组合化学 生物 核磁共振波谱 生物化学 基因 护理部 医学 癌症研究 肝细胞癌
作者
Satish C. Gupta,Mrinal Kashyap,Yogita Bansal,Gulshan Bansal
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:: 1-20
标识
DOI:10.1080/1062936x.2024.2332203
摘要

Eight QSAR models (M1–M8) were developed from a dataset of 118 benzo-fused heteronuclear derivatives targeting VEGFR-2 by Monte Carlo optimization method of CORALSEA 2023 software. Models were generated with hybrid optimal descriptors using both SMILES and Graphs with zero- and first-order Morgan extended connectivity index from a training set of 103 derivatives. All statistical parameters for model validation were within the prescribed limits, establishing the models to be robust and of excellent quality. Among all models, split-2 of M5 was the best-fit as reflected by rvalidation2, Qvalidation2 and MAE. Mechanistic interpretation of this model assisted the identification of structural descriptors as promoters and hinderers for VEGFR-2 inhibition. These descriptors were utilized to design novel VEGFR-2 inhibitors (YS01-YS07) by bringing modifications in compound MS90 in the dataset. Docking of all designed compounds, MS90 and sorafenib with VEGFR-2 binding site revealed favourable binding interactions. Docking score of YS07 was higher than that of MS90 and sorafenib. Molecular dynamics simulation study revealed sustained interactions of YS07 with key amino acids of VEGFR-2 at a run time of 100 ns. This study concludes the development of a best fit QSAR model which can assist the design of new anticancer agents targeting VEGFR-2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助Cashwa采纳,获得10
刚刚
打工人完成签到,获得积分10
1秒前
1122完成签到,获得积分10
1秒前
张德帅完成签到,获得积分10
2秒前
wf关注了科研通微信公众号
2秒前
2秒前
3秒前
xiaoxin完成签到,获得积分20
3秒前
3秒前
4秒前
大模型应助选波采纳,获得10
5秒前
5秒前
水瓶完成签到,获得积分10
6秒前
耳冉完成签到,获得积分10
6秒前
7秒前
7秒前
飘逸少年发布了新的文献求助10
7秒前
8秒前
JamesPei应助寂11采纳,获得10
8秒前
bkagyin应助帽子和衣服23采纳,获得10
8秒前
Song发布了新的文献求助10
8秒前
积极的夏天完成签到 ,获得积分10
9秒前
包容柜子发布了新的文献求助10
9秒前
444完成签到,获得积分20
9秒前
9秒前
10秒前
大模型应助叮叮当当采纳,获得20
10秒前
lcy发布了新的文献求助10
10秒前
港港完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
顺利发布了新的文献求助10
12秒前
12秒前
12秒前
20发布了新的文献求助10
13秒前
wnan_07发布了新的文献求助10
13秒前
浮游应助英勇的寒蕾采纳,获得10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557221
求助须知:如何正确求助?哪些是违规求助? 4642435
关于积分的说明 14667964
捐赠科研通 4583782
什么是DOI,文献DOI怎么找? 2514417
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459402