Depression Detection Using Blood Cortisol Levels with Machine Learning Algorithms

计算机科学 算法 机器学习 人工智能
作者
Minakshee Patil,Prachi Mukherji,Vijay M. Wadhai
标识
DOI:10.1109/gcitc60406.2023.10425944
摘要

Depression is a pervasive mental health disorder, and timely and accurate diagnosis is critical for effective treatment. This research explores the feasibility of using blood cortisol levels as a biomarker for detecting depression. Through the utilization of machine learning algorithms, our objective is to construct a predictive model capable of categorizing individuals as either depressed or non-depressed based on their blood cortisol levels. A diverse and well-defined group of participants underwent standardized depression assessments, accompanied by the analysis of their blood samples to determine cortisol levels. Machine learning techniques, including Random Forest, Support Vector Machines, and Logistic Regression, among others, were employed to develop and validate the depression detection model. In this fictitious scenario, the test set performance metrics reveal that the SVM model achieved an accuracy of 0.85, precision of 0.82, recall of 0.87, and F1-score of 0.84. The GMM model showed slightly lower metrics, with an F1-score of 0.73, accuracy of 0.68, precision of 0.79, and recall of 0.79. Notably, the CNN model outperformed the others, boasting a remarkable 0.92 F1-score, 0.92 accuracy, 0.91 precision, and 0.93 recall. These results underscore the potential of using machine learning and blood cortisol levels as a reliable and objective tool for early depression detection, thereby enhancing the overall quality of mental health care outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大波斯菊发布了新的文献求助10
刚刚
丘比特应助小猪跳水采纳,获得10
刚刚
Riggle G完成签到,获得积分10
1秒前
1秒前
背后访风完成签到 ,获得积分10
1秒前
RitaLee完成签到 ,获得积分10
1秒前
文静的飞飞完成签到 ,获得积分10
1秒前
王九八发布了新的文献求助10
2秒前
执着凌兰完成签到,获得积分10
2秒前
小郭给小郭的求助进行了留言
2秒前
2秒前
3秒前
重要手机发布了新的文献求助10
3秒前
Mingchun发布了新的文献求助10
3秒前
睿诺应助lsc采纳,获得10
3秒前
Owen应助阿白采纳,获得10
4秒前
顾矜应助zhang采纳,获得30
4秒前
6秒前
7秒前
猪猪hero发布了新的文献求助10
7秒前
9秒前
鱼叮叮完成签到,获得积分10
9秒前
张三完成签到,获得积分10
9秒前
10秒前
晓晓发布了新的文献求助10
10秒前
sometimesawake完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
猪猪hero发布了新的文献求助30
13秒前
百川海纳6完成签到,获得积分10
13秒前
14秒前
阿俊完成签到 ,获得积分10
15秒前
呐呐完成签到,获得积分10
15秒前
16秒前
轻松的代云完成签到,获得积分10
16秒前
深海soda完成签到,获得积分10
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352