亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach

TRNSYS公司 设定值 暖通空调 Python(编程语言) 计算机科学 能源消耗 强化学习 PID控制器 热舒适性 温室 控制器(灌溉) 控制工程 模拟 控制理论(社会学) 汽车工程 人工智能 能量(信号处理) 操作系统 控制(管理) 数学 机械工程 工程类 空调 温度控制 园艺 物理 电气工程 统计 热力学 生物 农学
作者
Misbaudeen Aderemi Adesanya,Hammed Obasekore,Anis Rabiu,Wook-Ho Na,Qazeem Opeyemi Ogunlowo,Timothy Denen Akpenpuun,Min-Hwi Kim,Hyeon Tae Kim,Bo‐Yeong Kang,Hyun-Woo Lee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124126-124126 被引量:39
标识
DOI:10.1016/j.eswa.2024.124126
摘要

The control of indoor temperature in greenhouses is crucial as it directly impacts the crop's thermal comfort and the performance of heating, ventilation, and air-conditioning (HVAC) systems. Conventional feedback controllers, like on/off, can sometimes make HVAC system work at full capacity when only half that capacity is needed. In contrast, the proportional-integral-derivative (PID) controller, provides precise control based on its P, I, and D parameters. However, it lacks a formal design procedure for optimizing a specified objective function. Previous studies have utilized conventional PID tuning approaches to track room setpoint temperature for residential buildings, data centers, and office buildings, with limited research in greenhouse applications. To address this gap, this study proposes a flexible PID controller that employs a deep reinforcement learning (DRL) algorithm to optimize its parameters, by tracking the setpoints and energy consumption of a greenhouse planted with tomatoes. This approach is different from the typical method of using the trained RL agent directly in HVAC controls. Through a self-made TRNSYS-Python cosimulation framework, the DRL agent interacts directly and in real time with the greenhouse and its plants. Consequently, optimized PID parameters were established and tested in the simulated environment. The resulting performance, in terms of both energy consumption and its ability to maintain the crop's comfort temperature, was compared with the simulated on/off and manually tuned PID controllers. Compared to the on/off baseline control, the proposed PID optimized parameters reduce energy use by 8.81% to 12.99% and the manually tuned PID parameters with the Ziegler-Nichols tuning method reduce energy use by 7.17 %. Additionally, the proposed method had a deviation of 2.07% to 3.13%, while the manually tuned PID controller and the on/off controller had deviations of 7.27% and 3.27%, respectively, from the minimum comfortable temperature. This study serves as a framework for improving the energy efficiency of greenhouse HVAC system operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助wzy采纳,获得10
4秒前
比格大王应助clearlove采纳,获得10
7秒前
10秒前
wzy发布了新的文献求助10
16秒前
悟空爱吃酥橙完成签到,获得积分10
23秒前
27秒前
自律完成签到,获得积分10
41秒前
ma121完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
刺1656发布了新的文献求助10
1分钟前
1分钟前
jiangmi完成签到,获得积分10
2分钟前
Sene完成签到,获得积分10
2分钟前
andrele应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
3分钟前
蒙恩Maria发布了新的文献求助10
3分钟前
4分钟前
蒙恩Maria完成签到,获得积分10
4分钟前
Pattis完成签到 ,获得积分10
4分钟前
鲸鱼完成签到 ,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
moaner完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
优秀的甜菜完成签到,获得积分10
5分钟前
zznzn发布了新的文献求助10
6分钟前
Hello应助zznzn采纳,获得10
6分钟前
橘笙发布了新的文献求助10
6分钟前
Ricardo完成签到 ,获得积分10
6分钟前
6分钟前
橘笙完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443