Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach

TRNSYS公司 设定值 暖通空调 Python(编程语言) 计算机科学 能源消耗 强化学习 PID控制器 热舒适性 温室 控制器(灌溉) 控制工程 模拟 控制理论(社会学) 汽车工程 人工智能 能量(信号处理) 操作系统 控制(管理) 数学 机械工程 工程类 空调 温度控制 园艺 物理 电气工程 统计 热力学 生物 农学
作者
Misbaudeen Aderemi Adesanya,Hammed Obasekore,Anis Rabiu,Wook-Ho Na,Qazeem Opeyemi Ogunlowo,Timothy Denen Akpenpuun,Min‐Hwi Kim,Hyeon Tae Kim,Bo‐Yeong Kang,Hyun-Woo Lee
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124126-124126 被引量:5
标识
DOI:10.1016/j.eswa.2024.124126
摘要

The control of indoor temperature in greenhouses is crucial as it directly impacts the crop's thermal comfort and the performance of heating, ventilation, and air-conditioning (HVAC) systems. Conventional feedback controllers, like on/off, can sometimes make HVAC system work at full capacity when only half that capacity is needed. In contrast, the proportional-integral-derivative (PID) controller, provides precise control based on its P, I, and D parameters. However, it lacks a formal design procedure for optimizing a specified objective function. Previous studies have utilized conventional PID tuning approaches to track room setpoint temperature for residential buildings, data centers, and office buildings, with limited research in greenhouse applications. To address this gap, this study proposes a flexible PID controller that employs a deep reinforcement learning (DRL) algorithm to optimize its parameters, by tracking the setpoints and energy consumption of a greenhouse planted with tomatoes. This approach is different from the typical method of using the trained RL agent directly in HVAC controls. Through a self-made TRNSYS-Python cosimulation framework, the DRL agent interacts directly and in real time with the greenhouse and its plants. Consequently, optimized PID parameters were established and tested in the simulated environment. The resulting performance, in terms of both energy consumption and its ability to maintain the crop's comfort temperature, was compared with the simulated on/off and manually tuned PID controllers. Compared to the on/off baseline control, the proposed PID optimized parameters reduce energy use by 8.81% to 12.99% and the manually tuned PID parameters with the Ziegler-Nichols tuning method reduce energy use by 7.17 %. Additionally, the proposed method had a deviation of 2.07% to 3.13%, while the manually tuned PID controller and the on/off controller had deviations of 7.27% and 3.27%, respectively, from the minimum comfortable temperature. This study serves as a framework for improving the energy efficiency of greenhouse HVAC system operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向苡完成签到,获得积分10
1秒前
以筱发布了新的文献求助10
3秒前
bhkwxdxy完成签到,获得积分10
4秒前
悦耳虔纹完成签到 ,获得积分10
4秒前
xx完成签到,获得积分10
4秒前
大气灵枫完成签到,获得积分10
4秒前
妮妮完成签到,获得积分10
5秒前
7秒前
Struggle完成签到 ,获得积分10
8秒前
8秒前
秦兴虎完成签到,获得积分10
9秒前
Drew11完成签到,获得积分10
9秒前
风趣青槐完成签到,获得积分10
11秒前
科隆龙完成签到,获得积分10
12秒前
12秒前
饱满一手完成签到 ,获得积分10
12秒前
99完成签到,获得积分10
14秒前
枕星发布了新的文献求助10
14秒前
drlq2022完成签到,获得积分10
15秒前
王山完成签到,获得积分10
16秒前
自觉寒梦完成签到,获得积分10
17秒前
ding应助缥缈一刀采纳,获得10
17秒前
pakiorder发布了新的文献求助10
17秒前
专心搞学术完成签到,获得积分10
17秒前
bkagyin应助zzcherished采纳,获得10
19秒前
你怎么这么可爱啊完成签到,获得积分10
19秒前
20秒前
研友_Lmg1gZ完成签到,获得积分10
20秒前
Crazyer完成签到,获得积分10
20秒前
Shuey完成签到,获得积分10
21秒前
XXXXH完成签到,获得积分10
21秒前
Z可完成签到 ,获得积分10
22秒前
momo123完成签到 ,获得积分10
22秒前
高兴的书竹完成签到 ,获得积分10
23秒前
mp5完成签到,获得积分10
24秒前
薯条一克完成签到 ,获得积分10
24秒前
zzcherished完成签到,获得积分10
25秒前
阿军完成签到,获得积分10
25秒前
糊涂的皮皮虾完成签到 ,获得积分10
26秒前
big ben完成签到 ,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029