Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach

TRNSYS公司 设定值 暖通空调 Python(编程语言) 计算机科学 能源消耗 强化学习 PID控制器 热舒适性 温室 控制器(灌溉) 控制工程 模拟 控制理论(社会学) 汽车工程 人工智能 能量(信号处理) 操作系统 控制(管理) 数学 机械工程 工程类 空调 温度控制 园艺 物理 电气工程 统计 热力学 生物 农学
作者
Misbaudeen Aderemi Adesanya,Hammed Obasekore,Anis Rabiu,Wook-Ho Na,Qazeem Opeyemi Ogunlowo,Timothy Denen Akpenpuun,Min‐Hwi Kim,Hyeon Tae Kim,Bo‐Yeong Kang,Hyun-Woo Lee
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124126-124126 被引量:5
标识
DOI:10.1016/j.eswa.2024.124126
摘要

The control of indoor temperature in greenhouses is crucial as it directly impacts the crop's thermal comfort and the performance of heating, ventilation, and air-conditioning (HVAC) systems. Conventional feedback controllers, like on/off, can sometimes make HVAC system work at full capacity when only half that capacity is needed. In contrast, the proportional-integral-derivative (PID) controller, provides precise control based on its P, I, and D parameters. However, it lacks a formal design procedure for optimizing a specified objective function. Previous studies have utilized conventional PID tuning approaches to track room setpoint temperature for residential buildings, data centers, and office buildings, with limited research in greenhouse applications. To address this gap, this study proposes a flexible PID controller that employs a deep reinforcement learning (DRL) algorithm to optimize its parameters, by tracking the setpoints and energy consumption of a greenhouse planted with tomatoes. This approach is different from the typical method of using the trained RL agent directly in HVAC controls. Through a self-made TRNSYS-Python cosimulation framework, the DRL agent interacts directly and in real time with the greenhouse and its plants. Consequently, optimized PID parameters were established and tested in the simulated environment. The resulting performance, in terms of both energy consumption and its ability to maintain the crop's comfort temperature, was compared with the simulated on/off and manually tuned PID controllers. Compared to the on/off baseline control, the proposed PID optimized parameters reduce energy use by 8.81% to 12.99% and the manually tuned PID parameters with the Ziegler-Nichols tuning method reduce energy use by 7.17 %. Additionally, the proposed method had a deviation of 2.07% to 3.13%, while the manually tuned PID controller and the on/off controller had deviations of 7.27% and 3.27%, respectively, from the minimum comfortable temperature. This study serves as a framework for improving the energy efficiency of greenhouse HVAC system operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饭完成签到,获得积分10
刚刚
Cl1audia发布了新的文献求助10
1秒前
所所应助木可采纳,获得10
1秒前
Gyro完成签到,获得积分10
3秒前
隐形曼青应助lzx采纳,获得10
3秒前
4秒前
体贴紫完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
五六七完成签到,获得积分10
6秒前
6秒前
liz_发布了新的文献求助10
7秒前
新xin发布了新的文献求助10
8秒前
CodeCraft应助111111111采纳,获得10
9秒前
汉堡包应助秋天里的水采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
Gyro发布了新的文献求助50
10秒前
慕青应助keyun采纳,获得10
10秒前
体贴紫发布了新的文献求助10
10秒前
11秒前
Dr.Who发布了新的文献求助10
12秒前
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
dali完成签到 ,获得积分10
15秒前
accept发布了新的文献求助10
16秒前
JHJ完成签到,获得积分10
16秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174