Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach

TRNSYS公司 设定值 暖通空调 Python(编程语言) 计算机科学 能源消耗 强化学习 PID控制器 热舒适性 温室 控制器(灌溉) 控制工程 模拟 控制理论(社会学) 汽车工程 人工智能 能量(信号处理) 操作系统 控制(管理) 数学 机械工程 工程类 空调 温度控制 园艺 物理 电气工程 统计 热力学 生物 农学
作者
Misbaudeen Aderemi Adesanya,Hammed Obasekore,Anis Rabiu,Wook-Ho Na,Qazeem Opeyemi Ogunlowo,Timothy Denen Akpenpuun,Min-Hwi Kim,Hyeon Tae Kim,Bo‐Yeong Kang,Hyun-Woo Lee
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124126-124126 被引量:28
标识
DOI:10.1016/j.eswa.2024.124126
摘要

The control of indoor temperature in greenhouses is crucial as it directly impacts the crop's thermal comfort and the performance of heating, ventilation, and air-conditioning (HVAC) systems. Conventional feedback controllers, like on/off, can sometimes make HVAC system work at full capacity when only half that capacity is needed. In contrast, the proportional-integral-derivative (PID) controller, provides precise control based on its P, I, and D parameters. However, it lacks a formal design procedure for optimizing a specified objective function. Previous studies have utilized conventional PID tuning approaches to track room setpoint temperature for residential buildings, data centers, and office buildings, with limited research in greenhouse applications. To address this gap, this study proposes a flexible PID controller that employs a deep reinforcement learning (DRL) algorithm to optimize its parameters, by tracking the setpoints and energy consumption of a greenhouse planted with tomatoes. This approach is different from the typical method of using the trained RL agent directly in HVAC controls. Through a self-made TRNSYS-Python cosimulation framework, the DRL agent interacts directly and in real time with the greenhouse and its plants. Consequently, optimized PID parameters were established and tested in the simulated environment. The resulting performance, in terms of both energy consumption and its ability to maintain the crop's comfort temperature, was compared with the simulated on/off and manually tuned PID controllers. Compared to the on/off baseline control, the proposed PID optimized parameters reduce energy use by 8.81% to 12.99% and the manually tuned PID parameters with the Ziegler-Nichols tuning method reduce energy use by 7.17 %. Additionally, the proposed method had a deviation of 2.07% to 3.13%, while the manually tuned PID controller and the on/off controller had deviations of 7.27% and 3.27%, respectively, from the minimum comfortable temperature. This study serves as a framework for improving the energy efficiency of greenhouse HVAC system operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙星河关注了科研通微信公众号
1秒前
善学以致用应助CAT采纳,获得10
1秒前
3秒前
大个应助umi采纳,获得10
4秒前
Mars_X完成签到,获得积分10
5秒前
所所应助不点采纳,获得10
5秒前
陈霸下。完成签到,获得积分10
6秒前
江河湖库考试辅导完成签到 ,获得积分10
6秒前
susu完成签到 ,获得积分10
7秒前
huazhangchina完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
Binggo完成签到,获得积分10
9秒前
9秒前
高兴的向秋完成签到,获得积分20
9秒前
10秒前
10秒前
咿呀咿呀完成签到 ,获得积分10
10秒前
JamesPei应助YOBO采纳,获得10
11秒前
11秒前
Hello应助Atan采纳,获得10
11秒前
852应助开心蘑菇采纳,获得10
12秒前
12秒前
彩色纹发布了新的文献求助10
13秒前
14秒前
小芦铃发布了新的文献求助10
15秒前
俭朴冬瓜发布了新的文献求助10
15秒前
忧郁丹彤发布了新的文献求助10
15秒前
Stove发布了新的文献求助10
16秒前
16秒前
星辰大海应助冲冲采纳,获得10
16秒前
nini发布了新的文献求助10
18秒前
iwonder完成签到 ,获得积分20
18秒前
老实的半山完成签到,获得积分10
19秒前
20秒前
淡然柚子发布了新的文献求助10
20秒前
宇宙星河发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921521
求助须知:如何正确求助?哪些是违规求助? 4192717
关于积分的说明 13022872
捐赠科研通 3964097
什么是DOI,文献DOI怎么找? 2172871
邀请新用户注册赠送积分活动 1190512
关于科研通互助平台的介绍 1099711