Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach

TRNSYS公司 设定值 暖通空调 Python(编程语言) 计算机科学 能源消耗 强化学习 PID控制器 热舒适性 温室 控制器(灌溉) 控制工程 模拟 控制理论(社会学) 汽车工程 人工智能 能量(信号处理) 操作系统 控制(管理) 数学 机械工程 工程类 空调 温度控制 园艺 物理 电气工程 统计 热力学 生物 农学
作者
Misbaudeen Aderemi Adesanya,Hammed Obasekore,Anis Rabiu,Wook-Ho Na,Qazeem Opeyemi Ogunlowo,Timothy Denen Akpenpuun,Min‐Hwi Kim,Hyeon Tae Kim,Bo‐Yeong Kang,Hyun-Woo Lee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124126-124126 被引量:5
标识
DOI:10.1016/j.eswa.2024.124126
摘要

The control of indoor temperature in greenhouses is crucial as it directly impacts the crop's thermal comfort and the performance of heating, ventilation, and air-conditioning (HVAC) systems. Conventional feedback controllers, like on/off, can sometimes make HVAC system work at full capacity when only half that capacity is needed. In contrast, the proportional-integral-derivative (PID) controller, provides precise control based on its P, I, and D parameters. However, it lacks a formal design procedure for optimizing a specified objective function. Previous studies have utilized conventional PID tuning approaches to track room setpoint temperature for residential buildings, data centers, and office buildings, with limited research in greenhouse applications. To address this gap, this study proposes a flexible PID controller that employs a deep reinforcement learning (DRL) algorithm to optimize its parameters, by tracking the setpoints and energy consumption of a greenhouse planted with tomatoes. This approach is different from the typical method of using the trained RL agent directly in HVAC controls. Through a self-made TRNSYS-Python cosimulation framework, the DRL agent interacts directly and in real time with the greenhouse and its plants. Consequently, optimized PID parameters were established and tested in the simulated environment. The resulting performance, in terms of both energy consumption and its ability to maintain the crop's comfort temperature, was compared with the simulated on/off and manually tuned PID controllers. Compared to the on/off baseline control, the proposed PID optimized parameters reduce energy use by 8.81% to 12.99% and the manually tuned PID parameters with the Ziegler-Nichols tuning method reduce energy use by 7.17 %. Additionally, the proposed method had a deviation of 2.07% to 3.13%, while the manually tuned PID controller and the on/off controller had deviations of 7.27% and 3.27%, respectively, from the minimum comfortable temperature. This study serves as a framework for improving the energy efficiency of greenhouse HVAC system operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linfordlu完成签到,获得积分10
1秒前
安澜应助。z采纳,获得10
1秒前
llj完成签到,获得积分20
1秒前
佐为完成签到 ,获得积分10
2秒前
xzy完成签到 ,获得积分10
3秒前
归墟发布了新的文献求助10
4秒前
llj发布了新的文献求助10
5秒前
河马完成签到,获得积分10
5秒前
2123121321321完成签到,获得积分10
7秒前
开心向真完成签到,获得积分10
7秒前
大模型应助Sun1c7采纳,获得10
7秒前
852应助十一采纳,获得10
7秒前
淡淡明辉完成签到,获得积分10
9秒前
hu完成签到,获得积分10
9秒前
。z完成签到,获得积分20
10秒前
Xu_W卜完成签到,获得积分10
10秒前
iceeer完成签到,获得积分10
12秒前
12秒前
13秒前
郑郑郑幸运完成签到 ,获得积分10
13秒前
For_winter完成签到,获得积分10
13秒前
ZZ完成签到,获得积分10
14秒前
Acuity完成签到,获得积分10
14秒前
Lavendar完成签到 ,获得积分10
14秒前
Chamsel完成签到,获得积分10
14秒前
MS903完成签到 ,获得积分10
15秒前
15秒前
15秒前
开心完成签到 ,获得积分10
16秒前
pforjivcn完成签到,获得积分10
16秒前
安琦发布了新的文献求助10
16秒前
16秒前
Acuity发布了新的文献求助10
17秒前
欧大大完成签到,获得积分10
17秒前
julian190完成签到,获得积分10
17秒前
Jim luo发布了新的文献求助10
18秒前
大头完成签到 ,获得积分10
20秒前
jackie完成签到,获得积分10
21秒前
风趣铅笔完成签到,获得积分10
21秒前
Sun1c7发布了新的文献求助10
22秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068382
求助须知:如何正确求助?哪些是违规求助? 2722240
关于积分的说明 7476489
捐赠科研通 2369329
什么是DOI,文献DOI怎么找? 1256334
科研通“疑难数据库(出版商)”最低求助积分说明 609550
版权声明 596835