Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach

TRNSYS公司 设定值 暖通空调 Python(编程语言) 计算机科学 能源消耗 强化学习 PID控制器 热舒适性 温室 控制器(灌溉) 控制工程 模拟 控制理论(社会学) 汽车工程 人工智能 能量(信号处理) 操作系统 控制(管理) 数学 机械工程 工程类 空调 温度控制 生物 园艺 统计 农学 物理 热力学 电气工程
作者
Misbaudeen Aderemi Adesanya,Hammed Obasekore,Anis Rabiu,Wook-Ho Na,Qazeem Opeyemi Ogunlowo,Timothy Denen Akpenpuun,Min‐Hwi Kim,Hyeon Tae Kim,Bo‐Yeong Kang,Hyun-Woo Lee
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:252: 124126-124126 被引量:5
标识
DOI:10.1016/j.eswa.2024.124126
摘要

The control of indoor temperature in greenhouses is crucial as it directly impacts the crop's thermal comfort and the performance of heating, ventilation, and air-conditioning (HVAC) systems. Conventional feedback controllers, like on/off, can sometimes make HVAC system work at full capacity when only half that capacity is needed. In contrast, the proportional-integral-derivative (PID) controller, provides precise control based on its P, I, and D parameters. However, it lacks a formal design procedure for optimizing a specified objective function. Previous studies have utilized conventional PID tuning approaches to track room setpoint temperature for residential buildings, data centers, and office buildings, with limited research in greenhouse applications. To address this gap, this study proposes a flexible PID controller that employs a deep reinforcement learning (DRL) algorithm to optimize its parameters, by tracking the setpoints and energy consumption of a greenhouse planted with tomatoes. This approach is different from the typical method of using the trained RL agent directly in HVAC controls. Through a self-made TRNSYS-Python cosimulation framework, the DRL agent interacts directly and in real time with the greenhouse and its plants. Consequently, optimized PID parameters were established and tested in the simulated environment. The resulting performance, in terms of both energy consumption and its ability to maintain the crop's comfort temperature, was compared with the simulated on/off and manually tuned PID controllers. Compared to the on/off baseline control, the proposed PID optimized parameters reduce energy use by 8.81% to 12.99% and the manually tuned PID parameters with the Ziegler-Nichols tuning method reduce energy use by 7.17 %. Additionally, the proposed method had a deviation of 2.07% to 3.13%, while the manually tuned PID controller and the on/off controller had deviations of 7.27% and 3.27%, respectively, from the minimum comfortable temperature. This study serves as a framework for improving the energy efficiency of greenhouse HVAC system operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小荣发布了新的文献求助10
刚刚
Michelle发布了新的文献求助10
刚刚
KXX发布了新的文献求助10
1秒前
1秒前
浮生发布了新的文献求助10
1秒前
苟小兵发布了新的文献求助10
1秒前
博弈春秋发布了新的文献求助10
2秒前
Phosphene完成签到,获得积分0
2秒前
huaijie发布了新的文献求助10
2秒前
梅子酒发布了新的文献求助10
3秒前
3秒前
哇咔咔发布了新的文献求助10
3秒前
菜菜来了完成签到,获得积分10
3秒前
木维完成签到,获得积分10
3秒前
4秒前
温柔诗柳发布了新的文献求助10
4秒前
药化民工完成签到,获得积分10
5秒前
sun完成签到,获得积分20
5秒前
6秒前
研友_LNoDrn发布了新的文献求助200
7秒前
7秒前
zlh完成签到,获得积分10
7秒前
研友_VZG7GZ应助ark861023采纳,获得10
7秒前
苟小兵完成签到,获得积分20
8秒前
9秒前
jj发布了新的文献求助10
10秒前
Ton汤完成签到,获得积分10
10秒前
kk发布了新的文献求助10
10秒前
韩妙彤完成签到,获得积分10
10秒前
阿禹发布了新的文献求助30
11秒前
WuYiHHH完成签到,获得积分10
12秒前
皮皮萱完成签到,获得积分10
12秒前
Amber发布了新的文献求助10
12秒前
813完成签到,获得积分20
12秒前
老王子完成签到,获得积分10
12秒前
12秒前
fly发布了新的文献求助10
12秒前
xia完成签到,获得积分10
13秒前
白菜兔子完成签到 ,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419