材料科学
异质结
储能
阳极
离子
相(物质)
功率密度
电极
电导率
纳米技术
电容器
化学工程
光电子学
功率(物理)
电压
电气工程
物理化学
热力学
有机化学
量子力学
物理
工程类
化学
作者
Cai Liu,Peng Zhao,Keren Lu,Shuai Han,Chao Zhang,Xifeng Xia,Wu Lei,Qiubo Guo,Qingli Hao
标识
DOI:10.1002/adfm.202401392
摘要
Abstract Heterostructured composites, inheriting the integrated properties of the individual components due to the synergistic effect, have engendered great attention in materials science and energy storage. However, conventional biphasic heterostructures not only optimize the performance of the composites but also aggregate the inevitable drawbacks, which can be addressed with the construction of the triphasic heterostructures by introducing an appropriate intermediate phase, significantly. Herein, a two‐dimensional (2D) double‐heterostructures MoSe 2 ‐TiO 2 ‐MXene anode is architected for Li‐ion storage, which combines the advantages of the high theoretical capacity of MoSe 2 and metallic conductivity of MXene. Besides, the in‐situ derived TiO 2 can alleviate the irreversible phase transition of MoSe 2 , arising from the low electronic/ionic conductivities, through electronic coupling effects. Meanwhile, the intermediate phase of TiO 2 can further prevent the restacking issue of MXene, thus sustaining its high conductivity. Finally, the three‐dimensional (3D) printing technology is employed to further improve the kinetics of the electrodes for Li‐ion capacitors (LICs), which deliver the power density of 5563 W kg −1 at an energy density of 51 Wh kg −1 , and a remarkable cycling stability for 20 000 cycles at 1 A g −1 . This work deepens the understanding of the influence of heterostructured engineering on the design of high‐energy/power storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI