太赫兹辐射
指纹(计算)
电介质
光电子学
太赫兹光谱与技术
材料科学
太赫兹超材料
折射率
光学
计算机科学
物理
远红外激光器
计算机安全
激光器
作者
Yue Wang,Wenshuo Chen,Zijian Cui,Guangcheng Sun,Kuang Zhang
出处
期刊:Optics Letters
[The Optical Society]
日期:2024-04-10
卷期号:49 (9): 2477-2477
被引量:1
摘要
The terahertz absorption fingerprint spectrum is crucial for qualitative spectral analysis, revealing the rotational or vibrational energy levels of numerous biological macromolecules and chemicals within the THz frequency range. However, conventional sensing in this band is hindered by weak interactions with trace analytes, leading to subtle signals. In this Letter, an all-dielectric metasurface array is proposed to enhance the absorption fingerprint spectrum using quasi-bound states in the continuum (BIC) resonance. The observable quasi-BIC resonance is achieved by breaking the symmetry of the C 2 v structure. The periodic dimensions of the structure are adjusted to excite quasi-BIC resonances at different frequencies, thereby enhancing the fingerprint spectra of four different substances. By exploiting the correlation between the Q -factor and absorption across different frequencies, calibration of the molecular absorption fingerprint spectrum obtained through metasurface sensing yields precise enhanced absorption fingerprint spectra for various substances within the 0.55–1.6 THz range. Our Letter introduces a novel, to the best of our knowledge, strategy for trace sensing in the THz frequency range, demonstrating the promising potential for enhanced absorption fingerprint spectrum sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI