Predicting Luminance Decay of a Micro-LED display via Machine Learnings on Temperature Distribution and LED Degradation

亮度 降级(电信) LED显示屏 LED灯 材料科学 计算机科学 光电子学 物理 人工智能 电气工程 工程类 光学 电信
作者
Paul C.-P. Chao,Chien‐Chung Lin,Hao-Ren Chen,Duc Huy Nguyen
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4148384/v1
摘要

Abstract A new method for predicting the luminance decay of Micro Light Emitting Diode (Micro-LED) displays by machine learning models is proposed herein with experiments of temperature distribution and degradation established. Although Micro-LEDs can be used as a direct light source for large outdoor advertising billboards, harsh outdoor conditions may lead to the degradation of Micro-LED displays. As a result, a temperature model is first built to predict the temperature distribution for the surface of a Micro-LED display based on illuminated patterns and the temperature sensors installed on the back of the display, followed by the establishment of degradation models for predicting luminance decay of the display based on Micro-LED enclosure temperature, input current, and illumination time. Based on the different degradation characteristics observed for red, green, and blue light in the experiments, their degradation models are established separately. In addition, exponential curve-fitting and interpolation are conducted based on TM-21 for the high accuracy when predicting for a much longer aging period. The temperature model built exhibits a prediction error of less than 1.1°C, while an average error is kept below 1.05% (roughly 9 nits). Moreover, the predicted period using the proposed degradation model with high accuracy can reach up to tens of thousands or even hundreds of thousands of hours. It is evident that the predicted results within this long period meets the requirement of the exponential curve defined by TM-21.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张发布了新的文献求助10
2秒前
每天我都睡得好完成签到 ,获得积分10
2秒前
Two关注了科研通微信公众号
2秒前
桃子今天吃饱了应助fjf采纳,获得10
3秒前
科研通AI5应助科研小趴菜采纳,获得10
4秒前
4秒前
minever白发布了新的文献求助10
5秒前
dff完成签到,获得积分10
5秒前
bkagyin应助MINUS3采纳,获得10
5秒前
1122发布了新的文献求助10
6秒前
6秒前
7秒前
SYLH应助aaaaa采纳,获得10
7秒前
小纪关注了科研通微信公众号
8秒前
大模型应助白云朵儿采纳,获得30
8秒前
感性的沉鱼完成签到 ,获得积分10
8秒前
9秒前
10秒前
狄1234567完成签到,获得积分10
10秒前
10秒前
DS给DS的求助进行了留言
10秒前
lxf448发布了新的文献求助10
10秒前
daniel发布了新的文献求助10
13秒前
金虎发布了新的文献求助10
13秒前
天天快乐应助坤坤采纳,获得10
13秒前
还好发布了新的文献求助10
13秒前
袁大头发布了新的文献求助10
13秒前
小猪同学发布了新的文献求助10
14秒前
15秒前
顾矜应助芒果柠檬采纳,获得10
15秒前
霉小欧完成签到,获得积分10
16秒前
seacnli完成签到 ,获得积分10
16秒前
1122完成签到,获得积分10
16秒前
寂寞剑仙完成签到,获得积分10
16秒前
小飞七应助zzz采纳,获得10
17秒前
17秒前
17秒前
18秒前
KeYang完成签到,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514919
求助须知:如何正确求助?哪些是违规求助? 3097284
关于积分的说明 9234961
捐赠科研通 2792241
什么是DOI,文献DOI怎么找? 1532370
邀请新用户注册赠送积分活动 712002
科研通“疑难数据库(出版商)”最低求助积分说明 707071