Autonomous SRP Optimization Using an Edge-Based Data-Driven Solution

计算机科学 GSM演进的增强数据速率 人工智能
作者
A. Gambaretto,Madina Yermekova,Sudhanshu Srivastava,Zeshan Hyder
标识
DOI:10.2118/218539-ms
摘要

Abstract Sucker Rod Pumps (SRPs) are the leading Artificial Lift System (ALS) worldwide for low oil-producing wells. Yet, SRPs have been overlooked in the ongoing wave of digitalization within oil and gas production. SRP operation and optimization processes are outdated and still based on simple field legacy ‘rule of thumb’ practices. This paper presents a simple yet innovative solution that uses an Industrial Internet of Things (IIoT) framework to autonomously optimize SRP production while minimizing pump shutdowns. The SRP optimization algorithm, rule-based in nature, gathers trending operational data from the controller via a time-moving window. This time window represents a well snapshot that is used to evaluate performance indicators at different operating pump frequencies. These calculated performance indicators, namely Production Indicator (PI), Combined Indicators (CI) and Combined Indicator-Quadratic Penalty (CI-QP), are mainly a function of pump fillage, strokes per minute, and well shutdowns. The PI prioritizes higher well production, while the CI and CI-QP penalizes shutdowns to reduce pump failure rates. The algorithm dynamically evaluates the well performance indicators to recommend and implement an optimal frequency setpoint to the pump controller. This solution has been dockerized and developed as an Edge Application, capable of running directly on-site in an IIoT Gateway device. This application has been tested on eight SRP wells for several months with excellent results. These wells were tested in both PI and CI modes. As a result, inferred production increased by 15% and shutdowns reduced by 29% in average, in all tested wells. The solution provides an easy yet powerful tool that can be scaled to manage multiple wells by providing optimal setpoints based on pump-specific conditions. Additionally, features like user-configurable optimization cycle duration can be included for faster well optimization. With the advent of the digital oilfield, the solution evaluates trending data by leveraging IIoT to optimize SRP operation using real-time performance indicators of well production and shutdowns. This completely autonomous, edge-based solution requires no manual intervention and can be scaled to hundreds of wells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DreamRunner0410完成签到 ,获得积分10
刚刚
面向阳光完成签到,获得积分10
1秒前
dyr发布了新的文献求助10
1秒前
2秒前
123发布了新的文献求助10
3秒前
3秒前
4秒前
天真的雨发布了新的文献求助10
5秒前
彭彭完成签到 ,获得积分10
5秒前
科研通AI5应助RNAPW采纳,获得10
5秒前
至幸发布了新的文献求助10
5秒前
lin完成签到 ,获得积分10
6秒前
桐桐应助apple红了采纳,获得10
7秒前
发疯发布了新的文献求助10
8秒前
科研通AI5应助ddm采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
江恋发布了新的文献求助10
9秒前
Lynn发布了新的文献求助10
9秒前
10秒前
独特的魔镜完成签到,获得积分10
11秒前
天真的雨完成签到,获得积分10
11秒前
小y同学完成签到,获得积分20
11秒前
15秒前
Bob发布了新的文献求助10
15秒前
15秒前
研友_VZG7GZ应助74726采纳,获得10
15秒前
欢喜的凡桃完成签到 ,获得积分10
16秒前
甜美的储完成签到,获得积分20
17秒前
puke完成签到,获得积分10
17秒前
江恋完成签到,获得积分10
18秒前
一刀999级发布了新的文献求助10
18秒前
skyrmion发布了新的文献求助10
19秒前
zpl完成签到 ,获得积分10
19秒前
dyr完成签到,获得积分10
19秒前
19秒前
wy发布了新的文献求助10
19秒前
关畅澎完成签到,获得积分10
20秒前
打打应助机智的天天采纳,获得30
22秒前
大个应助沉静河马采纳,获得10
24秒前
陌上发布了新的文献求助20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957210
求助须知:如何正确求助?哪些是违规求助? 4218749
关于积分的说明 13131163
捐赠科研通 4001594
什么是DOI,文献DOI怎么找? 2189900
邀请新用户注册赠送积分活动 1204820
关于科研通互助平台的介绍 1116465