Autonomous SRP Optimization Using an Edge-Based Data-Driven Solution

计算机科学 GSM演进的增强数据速率 人工智能
作者
A. Gambaretto,Madina Yermekova,Sudhanshu Srivastava,Zeshan Hyder
标识
DOI:10.2118/218539-ms
摘要

Abstract Sucker Rod Pumps (SRPs) are the leading Artificial Lift System (ALS) worldwide for low oil-producing wells. Yet, SRPs have been overlooked in the ongoing wave of digitalization within oil and gas production. SRP operation and optimization processes are outdated and still based on simple field legacy ‘rule of thumb’ practices. This paper presents a simple yet innovative solution that uses an Industrial Internet of Things (IIoT) framework to autonomously optimize SRP production while minimizing pump shutdowns. The SRP optimization algorithm, rule-based in nature, gathers trending operational data from the controller via a time-moving window. This time window represents a well snapshot that is used to evaluate performance indicators at different operating pump frequencies. These calculated performance indicators, namely Production Indicator (PI), Combined Indicators (CI) and Combined Indicator-Quadratic Penalty (CI-QP), are mainly a function of pump fillage, strokes per minute, and well shutdowns. The PI prioritizes higher well production, while the CI and CI-QP penalizes shutdowns to reduce pump failure rates. The algorithm dynamically evaluates the well performance indicators to recommend and implement an optimal frequency setpoint to the pump controller. This solution has been dockerized and developed as an Edge Application, capable of running directly on-site in an IIoT Gateway device. This application has been tested on eight SRP wells for several months with excellent results. These wells were tested in both PI and CI modes. As a result, inferred production increased by 15% and shutdowns reduced by 29% in average, in all tested wells. The solution provides an easy yet powerful tool that can be scaled to manage multiple wells by providing optimal setpoints based on pump-specific conditions. Additionally, features like user-configurable optimization cycle duration can be included for faster well optimization. With the advent of the digital oilfield, the solution evaluates trending data by leveraging IIoT to optimize SRP operation using real-time performance indicators of well production and shutdowns. This completely autonomous, edge-based solution requires no manual intervention and can be scaled to hundreds of wells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助孟子采纳,获得10
3秒前
咪咪虾条完成签到,获得积分10
4秒前
5秒前
72完成签到 ,获得积分10
5秒前
YL完成签到,获得积分10
5秒前
夜雨诗意完成签到,获得积分10
6秒前
八九完成签到 ,获得积分10
6秒前
公冶愚志完成签到 ,获得积分10
8秒前
许xx完成签到 ,获得积分10
10秒前
12秒前
超级的妙晴完成签到 ,获得积分10
12秒前
Cindy应助看文献采纳,获得30
13秒前
绿袖子完成签到,获得积分10
13秒前
陈荣完成签到 ,获得积分10
16秒前
旧雨新知完成签到 ,获得积分10
17秒前
孟子发布了新的文献求助10
17秒前
xs完成签到,获得积分10
26秒前
白日梦小说家完成签到 ,获得积分10
26秒前
萧水白完成签到,获得积分0
26秒前
从容松弛完成签到 ,获得积分10
30秒前
自由文博完成签到 ,获得积分10
31秒前
笨笨青筠完成签到 ,获得积分10
35秒前
离岸完成签到,获得积分10
35秒前
37秒前
37秒前
Deerlu完成签到,获得积分10
37秒前
39秒前
苻醉山完成签到 ,获得积分10
39秒前
drift完成签到,获得积分10
43秒前
serena完成签到,获得积分10
44秒前
Cxyyyl完成签到 ,获得积分10
47秒前
胜天半子完成签到 ,获得积分10
47秒前
马大翔应助zhl采纳,获得30
48秒前
涛1完成签到 ,获得积分10
49秒前
genomed应助科研通管家采纳,获得10
51秒前
烟花应助科研通管家采纳,获得30
51秒前
hml123完成签到,获得积分10
52秒前
shrimp5215完成签到,获得积分10
54秒前
阿宁完成签到 ,获得积分10
57秒前
舟行碧波上完成签到,获得积分10
57秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146916
求助须知:如何正确求助?哪些是违规求助? 2798176
关于积分的说明 7826854
捐赠科研通 2454756
什么是DOI,文献DOI怎么找? 1306446
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565