Fine-Tuning for Few-Shot Image Classification by Multimodal Prototype Regularization

计算机科学 编码器 人工智能 分类器(UML) 上下文图像分类 计算机视觉 模式识别(心理学) 机器学习 图像(数学) 操作系统
作者
Qianhao Wu,Jiaxin Qi,Dong Zhang,Hanwang Zhang,Jinhui Tang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8543-8556
标识
DOI:10.1109/tmm.2024.3379896
摘要

Large pre-trained vision-language models, such as CLIP [1], have demonstrated remarkable performance in few shot image classification. To facilitate the rapid adaptation of CLIP in downstream tasks with limited visual samples, two primary frameworks have been proposed. The first framework centers on the image encoder and introduces a trainable visual classifier after the backbone to generate logits for each object class. Nevertheless, this framework heavily depends on limited visual features extracted by the pre-trained visual encoder, which can result in over-fitting issues. The second framework aims to optimize the text encoder by using trainable soft language prompts and computing logits for each class based on the similarity between image features and optimized prompt features. However, this framework encounters the issue of imperfect alignment between the representations extracted by the image and text encoders, making it difficult to fine-tune the language prompts using visual samples. This paper proposes a Multi- Modal Prototype Regularization (MMPR) method for CLIP based few-shot fine-tuning for image classification. MMPR can address the challenges of effectively utilizing both image and text features. MMPR fine-tunes a classifier and regularizes its weights using both image-based (ImgPR) and text-based (TexPR) prototypes. ImgPR represents the mean of image representations within the same class, derived from the image encoder, to distill specific visual distribution knowledge for classifier adaptation. TexPR represents the hand-crafted prompt associated with the class, derived from the text encoder, to incorporate general encyclopedic knowledge and mitigate visual over-fitting. MMPR significantly leverages both image and text information without increasing computational complexity during the inference stage compared to existing methods. Experimental results on various challenging public benchmarks demonstrate the superiority of the proposed MMPR method over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瞌睡完成签到,获得积分10
刚刚
cc完成签到 ,获得积分10
刚刚
xmy发布了新的文献求助10
刚刚
优美从菡发布了新的文献求助10
1秒前
qianqian完成签到,获得积分10
4秒前
舒舒完成签到,获得积分10
5秒前
5秒前
在水一方应助LZY采纳,获得10
6秒前
Jing发布了新的文献求助50
9秒前
毛豆发布了新的文献求助10
10秒前
龍fei完成签到,获得积分10
10秒前
12秒前
大豆发布了新的文献求助10
15秒前
18秒前
CodeCraft应助柒柒采纳,获得10
19秒前
20秒前
瞌睡发布了新的文献求助10
21秒前
24秒前
Ya完成签到 ,获得积分10
24秒前
麋鹿完成签到 ,获得积分10
25秒前
希望天下0贩的0应助大豆采纳,获得10
25秒前
依霏发布了新的文献求助10
25秒前
11完成签到,获得积分10
25秒前
Schroenius完成签到,获得积分10
25秒前
传奇3应助毛豆采纳,获得10
26秒前
豆包完成签到,获得积分10
27秒前
牛八先生发布了新的文献求助10
29秒前
30秒前
司南应助chase采纳,获得10
31秒前
科研通AI2S应助左白易采纳,获得10
31秒前
口腔溃杨完成签到,获得积分10
31秒前
依霏完成签到,获得积分10
33秒前
33秒前
海绵宝宝发布了新的文献求助30
34秒前
35秒前
35秒前
luqiu完成签到,获得积分10
37秒前
Jing完成签到 ,获得积分10
38秒前
柒柒发布了新的文献求助10
39秒前
哆小咪完成签到 ,获得积分10
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240773
求助须知:如何正确求助?哪些是违规求助? 2885503
关于积分的说明 8238845
捐赠科研通 2553913
什么是DOI,文献DOI怎么找? 1382066
科研通“疑难数据库(出版商)”最低求助积分说明 649461
邀请新用户注册赠送积分活动 625079