亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fine-Tuning for Few-Shot Image Classification by Multimodal Prototype Regularization

计算机科学 编码器 人工智能 分类器(UML) 上下文图像分类 计算机视觉 模式识别(心理学) 机器学习 图像(数学) 操作系统
作者
Qianhao Wu,Jiaxin Qi,Dong Zhang,Hanwang Zhang,Jinhui Tang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8543-8556 被引量:1
标识
DOI:10.1109/tmm.2024.3379896
摘要

Large pre-trained vision-language models, such as CLIP [1], have demonstrated remarkable performance in few shot image classification. To facilitate the rapid adaptation of CLIP in downstream tasks with limited visual samples, two primary frameworks have been proposed. The first framework centers on the image encoder and introduces a trainable visual classifier after the backbone to generate logits for each object class. Nevertheless, this framework heavily depends on limited visual features extracted by the pre-trained visual encoder, which can result in over-fitting issues. The second framework aims to optimize the text encoder by using trainable soft language prompts and computing logits for each class based on the similarity between image features and optimized prompt features. However, this framework encounters the issue of imperfect alignment between the representations extracted by the image and text encoders, making it difficult to fine-tune the language prompts using visual samples. This paper proposes a Multi- Modal Prototype Regularization (MMPR) method for CLIP based few-shot fine-tuning for image classification. MMPR can address the challenges of effectively utilizing both image and text features. MMPR fine-tunes a classifier and regularizes its weights using both image-based (ImgPR) and text-based (TexPR) prototypes. ImgPR represents the mean of image representations within the same class, derived from the image encoder, to distill specific visual distribution knowledge for classifier adaptation. TexPR represents the hand-crafted prompt associated with the class, derived from the text encoder, to incorporate general encyclopedic knowledge and mitigate visual over-fitting. MMPR significantly leverages both image and text information without increasing computational complexity during the inference stage compared to existing methods. Experimental results on various challenging public benchmarks demonstrate the superiority of the proposed MMPR method over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄咖啡豆完成签到 ,获得积分10
5秒前
7秒前
开霁发布了新的文献求助10
14秒前
凡人完成签到 ,获得积分10
15秒前
Jayzie完成签到 ,获得积分10
32秒前
沉香续断完成签到,获得积分20
35秒前
古古怪界丶黑大帅完成签到,获得积分10
48秒前
酷波er应助沉香续断采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
Hvginn完成签到,获得积分10
1分钟前
苏子愈完成签到 ,获得积分10
2分钟前
动听衬衫完成签到 ,获得积分10
2分钟前
动听衬衫完成签到 ,获得积分10
2分钟前
动听衬衫完成签到 ,获得积分10
2分钟前
2分钟前
沉香续断发布了新的文献求助10
2分钟前
2分钟前
隐形曼青应助结实青丝采纳,获得10
2分钟前
孤独蘑菇完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
王骧完成签到,获得积分10
4分钟前
美满信封完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI6.2应助王骧采纳,获得10
4分钟前
4分钟前
4分钟前
606发布了新的文献求助10
4分钟前
淮安石河子完成签到 ,获得积分10
4分钟前
4分钟前
威武采白完成签到 ,获得积分10
5分钟前
火山蜗牛完成签到,获得积分10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
马上顺利完成签到,获得积分10
5分钟前
6分钟前
结实青丝发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870815
求助须知:如何正确求助?哪些是违规求助? 6468169
关于积分的说明 15665055
捐赠科研通 4987063
什么是DOI,文献DOI怎么找? 2689150
邀请新用户注册赠送积分活动 1631491
关于科研通互助平台的介绍 1589535