Fine-Tuning for Few-Shot Image Classification by Multimodal Prototype Regularization

计算机科学 编码器 人工智能 分类器(UML) 上下文图像分类 计算机视觉 模式识别(心理学) 机器学习 图像(数学) 操作系统
作者
Qianhao Wu,Jiaxin Qi,Dong Zhang,Hanwang Zhang,Jinhui Tang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8543-8556 被引量:1
标识
DOI:10.1109/tmm.2024.3379896
摘要

Large pre-trained vision-language models, such as CLIP [1], have demonstrated remarkable performance in few shot image classification. To facilitate the rapid adaptation of CLIP in downstream tasks with limited visual samples, two primary frameworks have been proposed. The first framework centers on the image encoder and introduces a trainable visual classifier after the backbone to generate logits for each object class. Nevertheless, this framework heavily depends on limited visual features extracted by the pre-trained visual encoder, which can result in over-fitting issues. The second framework aims to optimize the text encoder by using trainable soft language prompts and computing logits for each class based on the similarity between image features and optimized prompt features. However, this framework encounters the issue of imperfect alignment between the representations extracted by the image and text encoders, making it difficult to fine-tune the language prompts using visual samples. This paper proposes a Multi- Modal Prototype Regularization (MMPR) method for CLIP based few-shot fine-tuning for image classification. MMPR can address the challenges of effectively utilizing both image and text features. MMPR fine-tunes a classifier and regularizes its weights using both image-based (ImgPR) and text-based (TexPR) prototypes. ImgPR represents the mean of image representations within the same class, derived from the image encoder, to distill specific visual distribution knowledge for classifier adaptation. TexPR represents the hand-crafted prompt associated with the class, derived from the text encoder, to incorporate general encyclopedic knowledge and mitigate visual over-fitting. MMPR significantly leverages both image and text information without increasing computational complexity during the inference stage compared to existing methods. Experimental results on various challenging public benchmarks demonstrate the superiority of the proposed MMPR method over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZexiWu发布了新的文献求助20
刚刚
玖念发布了新的文献求助10
1秒前
想毕业发布了新的文献求助40
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
kingwill应助科研通管家采纳,获得20
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
糖异生完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得30
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
lanananan发布了新的文献求助10
2秒前
Wang完成签到,获得积分10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
ZJPPPP应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得30
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
合适板栗完成签到,获得积分20
2秒前
ZJPPPP应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科目三应助qwepirt采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
XiaoLiu应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
ZJPPPP应助科研通管家采纳,获得10
3秒前
研友_想想发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
wz完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646