Fine-Tuning for Few-Shot Image Classification by Multimodal Prototype Regularization

计算机科学 编码器 人工智能 分类器(UML) 上下文图像分类 计算机视觉 模式识别(心理学) 机器学习 图像(数学) 操作系统
作者
Qianhao Wu,Jiaxin Qi,Dong Zhang,Hanwang Zhang,Jinhui Tang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8543-8556 被引量:1
标识
DOI:10.1109/tmm.2024.3379896
摘要

Large pre-trained vision-language models, such as CLIP [1], have demonstrated remarkable performance in few shot image classification. To facilitate the rapid adaptation of CLIP in downstream tasks with limited visual samples, two primary frameworks have been proposed. The first framework centers on the image encoder and introduces a trainable visual classifier after the backbone to generate logits for each object class. Nevertheless, this framework heavily depends on limited visual features extracted by the pre-trained visual encoder, which can result in over-fitting issues. The second framework aims to optimize the text encoder by using trainable soft language prompts and computing logits for each class based on the similarity between image features and optimized prompt features. However, this framework encounters the issue of imperfect alignment between the representations extracted by the image and text encoders, making it difficult to fine-tune the language prompts using visual samples. This paper proposes a Multi- Modal Prototype Regularization (MMPR) method for CLIP based few-shot fine-tuning for image classification. MMPR can address the challenges of effectively utilizing both image and text features. MMPR fine-tunes a classifier and regularizes its weights using both image-based (ImgPR) and text-based (TexPR) prototypes. ImgPR represents the mean of image representations within the same class, derived from the image encoder, to distill specific visual distribution knowledge for classifier adaptation. TexPR represents the hand-crafted prompt associated with the class, derived from the text encoder, to incorporate general encyclopedic knowledge and mitigate visual over-fitting. MMPR significantly leverages both image and text information without increasing computational complexity during the inference stage compared to existing methods. Experimental results on various challenging public benchmarks demonstrate the superiority of the proposed MMPR method over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
z1z1z发布了新的文献求助20
刚刚
zxc1064v完成签到,获得积分10
刚刚
jukongka应助收手吧大哥采纳,获得50
1秒前
WN发布了新的文献求助10
2秒前
大学生发布了新的文献求助10
3秒前
Steve完成签到,获得积分10
4秒前
4秒前
漫步云端完成签到,获得积分10
5秒前
动听灵枫发布了新的文献求助10
5秒前
5秒前
7秒前
NexusExplorer应助闪闪念文采纳,获得10
7秒前
7秒前
漫步云端发布了新的文献求助10
7秒前
希望天下0贩的0应助SSQY采纳,获得10
8秒前
潇洒飞丹发布了新的文献求助10
8秒前
孤桑叶完成签到,获得积分10
8秒前
丁仪完成签到,获得积分10
8秒前
9秒前
jiangwei发布了新的文献求助10
11秒前
Bao发布了新的文献求助10
13秒前
15秒前
爆米花应助smile采纳,获得10
15秒前
Steve发布了新的文献求助10
15秒前
Lucas应助moshi采纳,获得10
16秒前
完美世界应助小强123采纳,获得30
16秒前
16秒前
17秒前
17秒前
17秒前
18秒前
知许解夏应助无助的人采纳,获得10
20秒前
传统的孤丝完成签到 ,获得积分10
21秒前
21秒前
默然的歌完成签到 ,获得积分10
21秒前
DAI应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844