Predictably Unpredictable? How Judgmental and Machine Learning Forecasts Complement Each Other

补语(音乐) 杠杆(统计) 需求预测 计算机科学 文件夹 机器学习 缺货 人工智能 销售预测 预测技巧 采购 计量经济学 运筹学 运营管理 经济 财务 统计 数学 表型 化学 互补 基因 生物化学
作者
Devadrita Nair,Arnd Huchzermeier
出处
期刊:Production and Operations Management [Wiley]
卷期号:33 (5): 1214-1234 被引量:4
标识
DOI:10.1177/10591478241245138
摘要

Demand forecasting for seasonal products becomes especially challenging in the case of fast innovations, where the product portfolio is upgraded every season. In addition to the problem of forecasting demand without any historical data, companies also have to deal with frequent stockouts, which bias past sales and provide an unreliable anchor for making new forecasts. We show how one can use machine learning models to leverage information on comparable products from the past together with experts’ forecasts to improve forecasting accuracy. A machine learning forecast using only statistical features results in a forecast error reduction of 24%, measured by weighted mean absolute percentage error, compared to a purely judgmental prediction on data from Canyon Bicycles. Better yet, an integrated human-machine forecast leads to a further 14% reduction in forecast error, indicating that experts’ predictions remain essential for forecasting demand for rapidly innovating seasonal products. The combination of the experts’ knowledge of the future and the machine learning algorithms’ ability to leverage historical information works best in this setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空元正完成签到 ,获得积分10
刚刚
科目三应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
AN应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
核桃应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得30
2秒前
情怀应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
AN应助科研通管家采纳,获得50
2秒前
111发布了新的文献求助10
3秒前
Akim应助科研通管家采纳,获得20
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
momo发布了新的文献求助10
5秒前
7秒前
9秒前
Pattis完成签到 ,获得积分10
10秒前
红红发布了新的文献求助10
10秒前
Solkatt发布了新的文献求助10
12秒前
gavin完成签到 ,获得积分10
12秒前
小马甲应助tracy采纳,获得10
13秒前
14秒前
niNe3YUE应助朴实雪兰采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439