Reinforcement Learning for Scalable Train Timetable Rescheduling With Graph Representation

强化学习 计算机科学 可扩展性 人工智能 图形 代表(政治) 钢筋 机器学习 理论计算机科学 工程类 结构工程 数据库 政治 政治学 法学
作者
Peng Yue,Yaochu Jin,Xuewu Dai,Zhenhua Feng,Dongliang Cui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6472-6485 被引量:1
标识
DOI:10.1109/tits.2023.3344468
摘要

Train timetable rescheduling (TTR) aims to promptly restore the original operation of trains after unexpected disturbances or disruptions. Currently, this work is still done manually by train dispatchers, which is challenging to maintain performance under various problem instances. To mitigate this issue, this study proposes a reinforcement learning-based approach to TTR, which makes the following contributions compared to existing work. First, we design a simple directed graph to represent the TTR problem, enabling the automatic extraction of informative states through graph neural networks. Second, we reformulate the construction process of TTR's solution, not only decoupling the decision model from the problem size but also ensuring the generated scheme's feasibility. Third, we design a learning curriculum for our model to handle the scenarios with different levels of delay. Finally, a simple local search method is proposed to assist the learned decision model, which can significantly improve solution quality with little additional computation cost, further enhancing the practical value of our method. Extensive experimental results demonstrate the effectiveness of our method. The learned decision model can achieve better performance for various problems with varying degrees of train delay and different scales when compared to handcrafted rules and state-of-the-art solvers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
what完成签到,获得积分10
1秒前
小羊123发布了新的文献求助10
1秒前
1秒前
我是老大应助harmory采纳,获得30
2秒前
儒雅的擎汉完成签到,获得积分20
2秒前
桐桐应助宋宋采纳,获得30
2秒前
4秒前
4秒前
5秒前
LaTeXer应助pkujeff采纳,获得50
5秒前
Tianju发布了新的文献求助10
5秒前
6秒前
快乐人杰发布了新的文献求助10
6秒前
6秒前
djiwisksk66应助高贵的香之采纳,获得10
6秒前
大模型应助楠楠多多采纳,获得10
6秒前
nanishard发布了新的文献求助10
7秒前
拿云发布了新的文献求助10
7秒前
英俊的铭应助fy采纳,获得10
8秒前
9秒前
11秒前
陈宇完成签到 ,获得积分10
12秒前
12秒前
MingYueh发布了新的文献求助10
14秒前
冷酷的尔云完成签到 ,获得积分20
15秒前
15秒前
16秒前
汉堡包应助新威宝贝采纳,获得10
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
星辰大海应助小小虾采纳,获得10
19秒前
577发布了新的文献求助10
19秒前
Betty发布了新的文献求助10
22秒前
帕尼灬尼发布了新的文献求助10
22秒前
可乐完成签到 ,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719