Reinforcement Learning for Scalable Train Timetable Rescheduling With Graph Representation

强化学习 计算机科学 可扩展性 人工智能 图形 代表(政治) 钢筋 机器学习 理论计算机科学 工程类 结构工程 数据库 政治 政治学 法学
作者
Peng Yue,Yaochu Jin,Xuewu Dai,Zhenhua Feng,Dongliang Cui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6472-6485 被引量:1
标识
DOI:10.1109/tits.2023.3344468
摘要

Train timetable rescheduling (TTR) aims to promptly restore the original operation of trains after unexpected disturbances or disruptions. Currently, this work is still done manually by train dispatchers, which is challenging to maintain performance under various problem instances. To mitigate this issue, this study proposes a reinforcement learning-based approach to TTR, which makes the following contributions compared to existing work. First, we design a simple directed graph to represent the TTR problem, enabling the automatic extraction of informative states through graph neural networks. Second, we reformulate the construction process of TTR's solution, not only decoupling the decision model from the problem size but also ensuring the generated scheme's feasibility. Third, we design a learning curriculum for our model to handle the scenarios with different levels of delay. Finally, a simple local search method is proposed to assist the learned decision model, which can significantly improve solution quality with little additional computation cost, further enhancing the practical value of our method. Extensive experimental results demonstrate the effectiveness of our method. The learned decision model can achieve better performance for various problems with varying degrees of train delay and different scales when compared to handcrafted rules and state-of-the-art solvers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的三毒完成签到,获得积分10
1秒前
Lucas应助看不懂采纳,获得10
1秒前
大胆听莲发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
英俊的铭应助包容的雨泽采纳,获得100
3秒前
白啾啾完成签到,获得积分10
3秒前
放眼天下完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
小小小小小粉帽啊完成签到,获得积分10
5秒前
5秒前
悦耳从筠发布了新的文献求助10
6秒前
文昊发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
傅宛白完成签到,获得积分10
7秒前
7秒前
7秒前
jxuexiong完成签到,获得积分10
7秒前
gu发布了新的文献求助10
8秒前
CipherSage应助老实半邪采纳,获得10
8秒前
old赵发布了新的文献求助10
8秒前
丘比特应助jeff采纳,获得10
9秒前
9秒前
9秒前
10秒前
傅宛白发布了新的文献求助10
10秒前
鸽子5359完成签到,获得积分10
11秒前
隐形曼青应助chen采纳,获得10
11秒前
11秒前
11秒前
活泼的铃铛给活泼的铃铛的求助进行了留言
12秒前
caizy发布了新的文献求助10
12秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
12秒前
看不懂发布了新的文献求助10
12秒前
12秒前
CipherSage应助张琳琳采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026