Reinforcement Learning for Scalable Train Timetable Rescheduling With Graph Representation

强化学习 计算机科学 可扩展性 人工智能 图形 代表(政治) 钢筋 机器学习 理论计算机科学 工程类 结构工程 数据库 政治 政治学 法学
作者
Peng Yue,Yaochu Jin,Xuewu Dai,Zhenhua Feng,Dongliang Cui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6472-6485 被引量:1
标识
DOI:10.1109/tits.2023.3344468
摘要

Train timetable rescheduling (TTR) aims to promptly restore the original operation of trains after unexpected disturbances or disruptions. Currently, this work is still done manually by train dispatchers, which is challenging to maintain performance under various problem instances. To mitigate this issue, this study proposes a reinforcement learning-based approach to TTR, which makes the following contributions compared to existing work. First, we design a simple directed graph to represent the TTR problem, enabling the automatic extraction of informative states through graph neural networks. Second, we reformulate the construction process of TTR's solution, not only decoupling the decision model from the problem size but also ensuring the generated scheme's feasibility. Third, we design a learning curriculum for our model to handle the scenarios with different levels of delay. Finally, a simple local search method is proposed to assist the learned decision model, which can significantly improve solution quality with little additional computation cost, further enhancing the practical value of our method. Extensive experimental results demonstrate the effectiveness of our method. The learned decision model can achieve better performance for various problems with varying degrees of train delay and different scales when compared to handcrafted rules and state-of-the-art solvers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
沧浪发布了新的文献求助10
1秒前
科研通AI2S应助CGBY采纳,获得10
2秒前
孝顺的班完成签到,获得积分10
2秒前
小半发布了新的文献求助10
2秒前
wahaha发布了新的文献求助10
3秒前
小二郎应助YY采纳,获得10
3秒前
今后应助YE采纳,获得10
4秒前
4秒前
忘尘发布了新的文献求助10
4秒前
孝顺的班发布了新的文献求助10
4秒前
saikema完成签到,获得积分20
4秒前
cj发布了新的文献求助10
5秒前
彭a发布了新的文献求助10
6秒前
陈大大完成签到,获得积分10
6秒前
深情安青应助芬栀采纳,获得10
7秒前
7秒前
背后白梦发布了新的文献求助10
8秒前
归零儿完成签到,获得积分10
8秒前
8秒前
坚强的水果完成签到,获得积分10
9秒前
Owen应助瑶瑶乐采纳,获得10
9秒前
大模型应助活力数据线采纳,获得10
9秒前
10秒前
shd-fufa完成签到,获得积分10
10秒前
NexusExplorer应助烟火会翻滚采纳,获得10
10秒前
11秒前
酷波er应助老实皮卡丘采纳,获得10
12秒前
搜集达人应助瓜瓜采纳,获得10
12秒前
wahaha完成签到,获得积分10
12秒前
麋鹿完成签到 ,获得积分10
13秒前
14秒前
WEnyu完成签到,获得积分20
15秒前
上官若男应助你hao采纳,获得10
15秒前
筋筋子发布了新的文献求助10
15秒前
15秒前
YE发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585