Reinforcement Learning for Scalable Train Timetable Rescheduling With Graph Representation

强化学习 计算机科学 可扩展性 人工智能 图形 代表(政治) 钢筋 机器学习 理论计算机科学 工程类 结构工程 数据库 政治 政治学 法学
作者
Peng Yue,Yaochu Jin,Xuewu Dai,Zhenhua Feng,Dongliang Cui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6472-6485 被引量:1
标识
DOI:10.1109/tits.2023.3344468
摘要

Train timetable rescheduling (TTR) aims to promptly restore the original operation of trains after unexpected disturbances or disruptions. Currently, this work is still done manually by train dispatchers, which is challenging to maintain performance under various problem instances. To mitigate this issue, this study proposes a reinforcement learning-based approach to TTR, which makes the following contributions compared to existing work. First, we design a simple directed graph to represent the TTR problem, enabling the automatic extraction of informative states through graph neural networks. Second, we reformulate the construction process of TTR's solution, not only decoupling the decision model from the problem size but also ensuring the generated scheme's feasibility. Third, we design a learning curriculum for our model to handle the scenarios with different levels of delay. Finally, a simple local search method is proposed to assist the learned decision model, which can significantly improve solution quality with little additional computation cost, further enhancing the practical value of our method. Extensive experimental results demonstrate the effectiveness of our method. The learned decision model can achieve better performance for various problems with varying degrees of train delay and different scales when compared to handcrafted rules and state-of-the-art solvers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
晁子枫发布了新的文献求助10
1秒前
1秒前
1秒前
夜半芜凉发布了新的文献求助10
2秒前
李健的小迷弟应助sadd采纳,获得10
3秒前
科研白发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
务实的惜寒完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
张志迪发布了新的文献求助10
5秒前
zenzi发布了新的文献求助10
5秒前
随缘来一个吧完成签到 ,获得积分10
5秒前
5秒前
5秒前
和谐碧琴发布了新的文献求助10
6秒前
优雅盼海完成签到,获得积分10
7秒前
7秒前
悟空发布了新的文献求助30
8秒前
Jared应助科研通管家采纳,获得10
8秒前
8秒前
asd应助科研通管家采纳,获得30
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
tiptip应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
zgrmws应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
无花果应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002