A Haavelmo grey model based on economic growth and its application to energy industry investments

经济 增长模型 能量(信号处理) 经济体制 自然资源经济学 产业组织 微观经济学 数学 统计
作者
Hui Li,Weige Nie,Huiming Duan
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:181: 114669-114669
标识
DOI:10.1016/j.chaos.2024.114669
摘要

The energy industry is a major source of greenhouse gas emissions, and energy investment is an important regulatory tool to encourage the energy industry to actively respond to climate change and achieve low-carbon development. Therefore, it is of great practical significance to correctly understand the important role of the energy industry, to predict energy investments objectively and accurately, to achieve scientific and rational investment, and make policy recommendations for the energy production and consumption revolution. In this paper, the Haavelmo model of economic growth is introduced into the energy system, using the characteristics of the continuous form of the model to establish the differential equations for the dynamics of fixed asset investment in the energy industry, and Haavelmo's grey prediction model using the grey difference information principle. Meanwhile, the Python program is used to solve the parameters of the new model, and the mathematical transformation is used to find the time response equation of the new model, and the modeling steps and the modeling flow chart of the model are obtained. Finally, the new model will be applied to two types of energy investments in China: total energy industry investment and investment in electricity, steam, hot water production, and supply industry. Both types of energy use the same modeling object and forecast object, and six cases are compared with three grey forecasting models from different perspectives, and their results show that they are much better than the other three grey forecasting models, demonstrating the effectiveness of the new model to effectively forecast energy investments and improve the efficiency of energy industry investments, cultivate healthy and environmentally friendly energy consumption habits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
holmes发布了新的文献求助10
1秒前
希望天下0贩的0应助qin采纳,获得10
3秒前
栗子关注了科研通微信公众号
3秒前
4秒前
5秒前
5秒前
wanci应助安静的瑾瑜采纳,获得10
6秒前
爱因斯坦的问号完成签到 ,获得积分10
7秒前
7秒前
9秒前
赵娜发布了新的文献求助10
10秒前
添酱发布了新的文献求助10
10秒前
调研昵称发布了新的文献求助10
11秒前
寒冷代真完成签到,获得积分10
13秒前
他方世界完成签到,获得积分10
14秒前
Loooong发布了新的文献求助10
14秒前
BaooooooMao完成签到,获得积分10
17秒前
18秒前
aa完成签到,获得积分10
21秒前
21秒前
qin发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
落寞龙猫完成签到,获得积分10
26秒前
27秒前
宋小九完成签到,获得积分10
27秒前
赘婿应助鲤鱼寻菡采纳,获得20
28秒前
29秒前
29秒前
29秒前
李健应助风趣万声采纳,获得10
30秒前
落寞绿蕊完成签到,获得积分10
30秒前
香蕉觅云应助zhu96114748采纳,获得30
33秒前
kiki647发布了新的文献求助10
33秒前
脸就是黑啊完成签到,获得积分10
33秒前
细心蚂蚁发布了新的文献求助10
34秒前
古藤完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136607
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782462
捐赠科研通 2443707
什么是DOI,文献DOI怎么找? 1299370
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954