A hybrid proper orthogonal decomposition and next generation reservoir computing approach for high-dimensional chaotic prediction: Application to flow-induced vibration of tube bundles

混乱的 李雅普诺夫指数 可预测性 计算机科学 非线性系统 控制理论(社会学) 数学 人工智能 物理 量子力学 统计 控制(管理)
作者
Tongwei Liu,Xielin Zhao,Pan Sun,Jinxiong Zhou
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (3) 被引量:2
标识
DOI:10.1063/5.0191901
摘要

Chaotic time series prediction is a central science problem in diverse areas, ranging from engineering, economy to nature. Classical chaotic prediction techniques are limited to short-term prediction of low- or moderate-dimensional systems. Chaotic prediction of high-dimensional engineering problems is notoriously challenging. Here, we report a hybrid approach by combining proper orthogonal decomposition (POD) with the recently developed next generation reservoir computing (NGRC) for the chaotic forecasting of high-dimensional systems. The hybrid approach integrates the synergistic features of the POD for model reduction and the high efficiency of NGRC for temporal data analysis, resulting in a new paradigm on data-driven chaotic prediction. We perform the first chaotic prediction of the nonlinear flow-induced vibration (FIV) of loosely supported tube bundles in crossflow. Reducing the FIV of a continuous beam into a 3-degree-of-freedom system using POD modes and training the three time coefficients via a NGRC network with three layers, the hybrid approach can predict time series of a weakly chaotic system with root mean square prediction error less than 1% to 19.3 Lyapunov time, while a three Lyapunov time prediction is still achieved for a highly chaotic system. A comparative study demonstrates that the POD-NGRC outperforms the other existing methods in terms of either predictability or efficiency. The efforts open a new avenue for the chaotic prediction of high-dimensional nonlinear dynamic systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
已歌发布了新的文献求助10
刚刚
1秒前
汉堡包应助hhs采纳,获得10
1秒前
2秒前
2秒前
2秒前
汉堡包应助茫然树茫然果采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
大个应助迷人灰狼采纳,获得10
5秒前
TTT发布了新的文献求助10
5秒前
清秀的大山完成签到,获得积分10
5秒前
清枫完成签到,获得积分10
6秒前
6秒前
FashionBoy应助智商洼地采纳,获得10
6秒前
田様应助谷策采纳,获得10
7秒前
张zz发布了新的文献求助10
8秒前
jzt12138发布了新的文献求助10
9秒前
流氓煎蛋发布了新的文献求助10
9秒前
清枫发布了新的文献求助10
9秒前
newbiology完成签到 ,获得积分10
9秒前
10秒前
研友_V8RQEZ完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
橘子发布了新的文献求助10
14秒前
已知中的未知完成签到 ,获得积分10
14秒前
14秒前
温柔的吐司完成签到,获得积分10
15秒前
15秒前
15秒前
17秒前
18秒前
18秒前
慕青应助JL采纳,获得50
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711503
求助须知:如何正确求助?哪些是违规求助? 5204319
关于积分的说明 15264554
捐赠科研通 4863764
什么是DOI,文献DOI怎么找? 2610925
邀请新用户注册赠送积分活动 1561295
关于科研通互助平台的介绍 1518636