Multichannel Cross-Modal Fusion Network for Multimodal Sentiment Analysis Considering Language Information Enhancement

计算机科学 情绪分析 人工智能 信息融合 传感器融合 情态动词 融合 自然语言处理 语音识别 语言学 哲学 化学 高分子化学
作者
Ronglong Hu,Jizheng Yi,Aibin Chen,Lijiang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9814-9824 被引量:2
标识
DOI:10.1109/tii.2024.3388670
摘要

With the popularity of short videos, analyzing human emotions is crucial for understanding individual attitudes and guiding social public opinions. Consequently, multimodal sentiment analysis (MSA) has garnered significant attention in the field of human–computer interaction. The main challenge of MSA is to explore a high-quality multimodal fusion framework, as multiple modalities contribute inconsistently to sentiment prediction. However, most of the existing methods assume equal importance among different modalities, resulting in inadequate expression of the main modality. In addition, auxiliary modalities often contain redundant information, which hinders the multimodal fusion process. Therefore, we propose the multichannel cross-modal fusion network (MCFNet) to promote the multimodal fusion procedure by constructing a multichannel various modality fusion framework comprising three channels: obtaining multimodal representation through the first channel; eliminating information redundancy from auxiliary modalities via the second channel; and enhancing significance attributed to the main modality adopting the third channel. Subsequently, we design a multichannel information fusion gate to integrate feature representations from these three channels for downstream sentiment classification tasks. Numerous experiments on three benchmark datasets, CMU-multimodal opinion sentiment intensity (MOSI), CMU-multimodal opinion sentiment and emotion intensity (MOSEI), and Twitter2019, show that the MCFNet has made a significant progress compared to recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助莫小Q采纳,获得10
刚刚
烟花应助哈哈哈采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
归海一刀发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
orixero应助自由南珍采纳,获得10
3秒前
马到成功完成签到,获得积分10
4秒前
小太阳关注了科研通微信公众号
4秒前
学术底层完成签到,获得积分10
5秒前
FashionBoy应助YYL采纳,获得10
5秒前
欧耶椰椰完成签到,获得积分10
6秒前
6秒前
crillzlol完成签到,获得积分10
6秒前
wxy发布了新的文献求助10
6秒前
7秒前
liangzai发布了新的文献求助10
7秒前
酷炫枫完成签到,获得积分10
7秒前
NorMal.L发布了新的文献求助10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
风凌完成签到 ,获得积分10
8秒前
开朗的秋白完成签到,获得积分20
8秒前
8秒前
8秒前
ayan发布了新的文献求助10
10秒前
希望天下0贩的0应助绝尘采纳,获得10
10秒前
来因发布了新的文献求助30
11秒前
ograss发布了新的文献求助10
12秒前
13秒前
红娘发布了新的文献求助10
13秒前
完美世界应助顶眼打老虎采纳,获得10
14秒前
14秒前
Sky完成签到,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934127
求助须知:如何正确求助?哪些是违规求助? 4202119
关于积分的说明 13056004
捐赠科研通 3976280
什么是DOI,文献DOI怎么找? 2178910
邀请新用户注册赠送积分活动 1195201
关于科研通互助平台的介绍 1106567