Multichannel Cross-Modal Fusion Network for Multimodal Sentiment Analysis Considering Language Information Enhancement

计算机科学 情绪分析 人工智能 信息融合 传感器融合 情态动词 融合 自然语言处理 语音识别 语言学 化学 哲学 高分子化学
作者
Ronglong Hu,Jizheng Yi,Aibin Chen,Lijiang Chen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9814-9824 被引量:2
标识
DOI:10.1109/tii.2024.3388670
摘要

With the popularity of short videos, analyzing human emotions is crucial for understanding individual attitudes and guiding social public opinions. Consequently, multimodal sentiment analysis (MSA) has garnered significant attention in the field of human–computer interaction. The main challenge of MSA is to explore a high-quality multimodal fusion framework, as multiple modalities contribute inconsistently to sentiment prediction. However, most of the existing methods assume equal importance among different modalities, resulting in inadequate expression of the main modality. In addition, auxiliary modalities often contain redundant information, which hinders the multimodal fusion process. Therefore, we propose the multichannel cross-modal fusion network (MCFNet) to promote the multimodal fusion procedure by constructing a multichannel various modality fusion framework comprising three channels: obtaining multimodal representation through the first channel; eliminating information redundancy from auxiliary modalities via the second channel; and enhancing significance attributed to the main modality adopting the third channel. Subsequently, we design a multichannel information fusion gate to integrate feature representations from these three channels for downstream sentiment classification tasks. Numerous experiments on three benchmark datasets, CMU-multimodal opinion sentiment intensity (MOSI), CMU-multimodal opinion sentiment and emotion intensity (MOSEI), and Twitter2019, show that the MCFNet has made a significant progress compared to recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无味发布了新的文献求助10
2秒前
nini907发布了新的文献求助10
3秒前
XU发布了新的文献求助10
5秒前
6秒前
zz完成签到,获得积分10
6秒前
szmsnail完成签到,获得积分10
8秒前
9秒前
11秒前
CipherSage应助Wendygogogo采纳,获得10
11秒前
乌江上次完成签到,获得积分10
11秒前
SYLH应助且听风吟采纳,获得10
12秒前
13秒前
领导范儿应助17e采纳,获得10
15秒前
能干的巨人完成签到,获得积分10
15秒前
明天见发布了新的文献求助10
16秒前
jjamazing应助乌江上次采纳,获得10
19秒前
惠嘟嘟完成签到,获得积分10
21秒前
可爱的函函应助椰子冻采纳,获得50
21秒前
22秒前
23秒前
Wendygogogo完成签到,获得积分20
23秒前
扶光完成签到 ,获得积分10
24秒前
28秒前
yym发布了新的文献求助10
28秒前
Wendygogogo发布了新的文献求助10
29秒前
yang完成签到,获得积分10
30秒前
30秒前
面包发布了新的文献求助10
30秒前
31秒前
4356发布了新的文献求助20
32秒前
32秒前
XU完成签到,获得积分10
32秒前
堃kun发布了新的文献求助10
33秒前
35秒前
sunbursl发布了新的文献求助10
35秒前
37秒前
都会完成签到 ,获得积分10
38秒前
浅浅问夏发布了新的文献求助10
39秒前
科研小白发布了新的文献求助10
40秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003