Single-Image-Based Deep Learning for Segmentation of Early Esophageal Cancer Lesions

深度学习 人工智能 计算机科学 分割 一般化 图像分割 掷骰子 医学影像学 Sørensen–骰子系数 新颖性 模式识别(心理学) 图像(数学) 计算机视觉 数学 数学分析 哲学 几何学 神学
作者
Haipeng Li,Dingrui Liu,Yu Zeng,Shuaicheng Liu,Tao Gan,Nini Rao,Jinlin Yang,Bing Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2676-2688 被引量:3
标识
DOI:10.1109/tip.2024.3379902
摘要

Accurate segmentation of lesions is crucial for diagnosis and treatment of early esophageal cancer (EEC). However, neither traditional nor deep learning-based methods up to today can meet the clinical requirements, with the mean Dice score - the most important metric in medical image analysis - hardly exceeding 0.75. In this paper, we present a novel deep learning approach for segmenting EEC lesions. Our method stands out for its uniqueness, as it relies solely on a single input image from a patient, forming the so-called "You-Only-Have-One" (YOHO) framework. On one hand, this "one-image-one-network" learning ensures complete patient privacy as it does not use any images from other patients as the training data. On the other hand, it avoids nearly all generalization-related problems since each trained network is applied only to the same input image itself. In particular, we can push the training to "over-fitting" as much as possible to increase the segmentation accuracy. Our technical details include an interaction with clinical doctors to utilize their expertise, a geometry-based data augmentation over a single lesion image to generate the training dataset (the biggest novelty), and an edge-enhanced UNet. We have evaluated YOHO over an EEC dataset collected by ourselves and achieved a mean Dice score of 0.888, which is much higher as compared to the existing deep-learning methods, thus representing a significant advance toward clinical applications. The code and dataset are available at: https://github.com/lhaippp/YOHO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
由由完成签到,获得积分10
1秒前
1秒前
1秒前
科目三应助yanyust采纳,获得10
2秒前
纷纭完成签到,获得积分10
3秒前
Rgly发布了新的文献求助10
4秒前
slin_sjtu完成签到,获得积分0
4秒前
科研通AI2S应助lhtyzcg采纳,获得10
4秒前
暗栀发布了新的文献求助10
4秒前
那那发布了新的文献求助10
5秒前
慕青应助烤番薯采纳,获得10
5秒前
qweer发布了新的文献求助10
7秒前
8秒前
9秒前
psj完成签到,获得积分10
9秒前
揽星完成签到,获得积分10
11秒前
Cui应助那那采纳,获得10
12秒前
小马甲应助那那采纳,获得10
12秒前
wuxunxun2015完成签到,获得积分10
12秒前
Yt完成签到 ,获得积分10
13秒前
02完成签到,获得积分10
14秒前
春困秋乏发布了新的文献求助10
14秒前
失眠的哈密瓜完成签到,获得积分10
14秒前
LZL完成签到 ,获得积分10
14秒前
皮皮完成签到 ,获得积分10
14秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
慕青应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
蒋50应助科研通管家采纳,获得10
16秒前
12345678完成签到,获得积分10
16秒前
大个应助科研通管家采纳,获得10
17秒前
ding应助陈泽宇采纳,获得30
17秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709349
求助须知:如何正确求助?哪些是违规求助? 3257399
关于积分的说明 9904871
捐赠科研通 2970268
什么是DOI,文献DOI怎么找? 1629147
邀请新用户注册赠送积分活动 772463
科研通“疑难数据库(出版商)”最低求助积分说明 743850