CSVD-TF: Cross-project software vulnerability detection with TrAdaBoost by fusing expert metrics and semantic metrics

计算机科学 公制(单位) 机器学习 学习迁移 人工智能 脆弱性(计算) 软件 数据挖掘 构造(python库) 计算机安全 程序设计语言 运营管理 经济
作者
Zhilong Cai,Yongwei Cai,Xiang Chen,Guilong Lu,Wenlong Pei,J. Leon Zhao
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:213: 112038-112038
标识
DOI:10.1016/j.jss.2024.112038
摘要

Recently, deep learning-based software vulnerability detection (SVD) approaches have achieved promising performance. However, the scarcity of high-quality labeled SVD data influences the practicality of these approaches. Therefore, cross-project software vulnerability detection (CSVD) has gradually attracted the attention of researchers since CSVD can utilize the labeled SVD data from the source project to construct an effective CSVD model for the target project via transfer learning. However, if a certain number of program modules in the target project can be labeled by security experts, it can help to improve CSVD model performance by effectively utilizing similar SVD data in the source project. For this more practical CSVD scenario, we propose a novel approach CSVD-TF via the transfer learning method TrAdaBoost. Moreover, we find expert metrics and semantic metrics extracted from the functions show a certain complementary in our investigated scenario. Therefore, we utilize a model-level metric fusion method to further improve the performance. We perform a comprehensive study to evaluate the effectiveness of CSVD-TF on four real-world projects. Our empirical results show that CSVD-TF can achieve performance improvements of 7.5% to 24.6% in terms of AUC when compared to five state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
根正苗红的小瑞恩完成签到,获得积分10
1秒前
陈颖发布了新的文献求助10
3秒前
ysw979发布了新的文献求助30
3秒前
5秒前
6秒前
6秒前
77完成签到,获得积分10
7秒前
斯文败类应助星宇采纳,获得10
8秒前
17发布了新的文献求助10
10秒前
11秒前
叶强发布了新的文献求助10
13秒前
LEMONS应助欧阳采纳,获得10
13秒前
jenningseastera举报FartKing求助涉嫌违规
14秒前
量子星尘发布了新的文献求助10
15秒前
可研小冲发布了新的文献求助10
16秒前
刘志娇完成签到,获得积分20
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
猪猪hero应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
djiwisksk66应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
情怀应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
21秒前
欧阳完成签到,获得积分10
23秒前
flow完成签到,获得积分10
23秒前
24秒前
24秒前
郑恒松完成签到,获得积分10
25秒前
pluto应助许志森采纳,获得10
26秒前
Jasper应助柔弱的马里奥采纳,获得10
28秒前
郑恒松发布了新的文献求助10
29秒前
29秒前
hnxxangel完成签到,获得积分10
30秒前
张杰完成签到,获得积分10
31秒前
无花果应助酷酷绿兰采纳,获得10
31秒前
拼搏的潘子完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844