CSVD-TF: Cross-project software vulnerability detection with TrAdaBoost by fusing expert metrics and semantic metrics

计算机科学 公制(单位) 机器学习 学习迁移 人工智能 脆弱性(计算) 软件 数据挖掘 构造(python库) 运营管理 计算机安全 经济 程序设计语言
作者
Zhilong Cai,Yongwei Cai,Xiang Chen,Guilong Lu,Wenlong Pei,J. Leon Zhao
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:213: 112038-112038
标识
DOI:10.1016/j.jss.2024.112038
摘要

Recently, deep learning-based software vulnerability detection (SVD) approaches have achieved promising performance. However, the scarcity of high-quality labeled SVD data influences the practicality of these approaches. Therefore, cross-project software vulnerability detection (CSVD) has gradually attracted the attention of researchers since CSVD can utilize the labeled SVD data from the source project to construct an effective CSVD model for the target project via transfer learning. However, if a certain number of program modules in the target project can be labeled by security experts, it can help to improve CSVD model performance by effectively utilizing similar SVD data in the source project. For this more practical CSVD scenario, we propose a novel approach CSVD-TF via the transfer learning method TrAdaBoost. Moreover, we find expert metrics and semantic metrics extracted from the functions show a certain complementary in our investigated scenario. Therefore, we utilize a model-level metric fusion method to further improve the performance. We perform a comprehensive study to evaluate the effectiveness of CSVD-TF on four real-world projects. Our empirical results show that CSVD-TF can achieve performance improvements of 7.5% to 24.6% in terms of AUC when compared to five state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lxd发布了新的文献求助10
刚刚
刚刚
1秒前
勤劳菠萝发布了新的文献求助10
2秒前
良仑完成签到,获得积分10
2秒前
2秒前
大洁癖完成签到,获得积分10
2秒前
娃娃菜妮发布了新的文献求助10
3秒前
3秒前
3秒前
万能图书馆应助crisis采纳,获得10
3秒前
小梁应助元谷雪采纳,获得10
3秒前
鸣笛应助浮爔采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
君君发布了新的文献求助30
4秒前
独特的沛凝完成签到 ,获得积分10
4秒前
打打应助拼搏的蜜粉采纳,获得10
4秒前
5秒前
大海完成签到,获得积分10
5秒前
loy发布了新的文献求助10
5秒前
叉叉桑完成签到,获得积分10
5秒前
鱼维尼发布了新的文献求助10
5秒前
liny完成签到,获得积分10
6秒前
WW完成签到 ,获得积分10
7秒前
7秒前
伶俐的无血完成签到 ,获得积分10
7秒前
7秒前
GGGYQ发布了新的文献求助30
7秒前
传奇3应助Betty采纳,获得10
7秒前
8秒前
chenjun7080发布了新的文献求助10
8秒前
yanglan关注了科研通微信公众号
8秒前
1111应助Hazel采纳,获得10
9秒前
叶伟帮发布了新的文献求助30
9秒前
FashionBoy应助绅度采纳,获得10
9秒前
酷波er应助张达采纳,获得10
9秒前
10秒前
Hey发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576877
求助须知:如何正确求助?哪些是违规求助? 3996040
关于积分的说明 12371262
捐赠科研通 3670085
什么是DOI,文献DOI怎么找? 2022574
邀请新用户注册赠送积分活动 1056697
科研通“疑难数据库(出版商)”最低求助积分说明 943826