亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CSVD-TF: Cross-project software vulnerability detection with TrAdaBoost by fusing expert metrics and semantic metrics

计算机科学 公制(单位) 机器学习 学习迁移 人工智能 脆弱性(计算) 软件 数据挖掘 构造(python库) 计算机安全 程序设计语言 运营管理 经济
作者
Zhilong Cai,Yongwei Cai,Xiang Chen,Guilong Lu,Wenlong Pei,J. Leon Zhao
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:213: 112038-112038
标识
DOI:10.1016/j.jss.2024.112038
摘要

Recently, deep learning-based software vulnerability detection (SVD) approaches have achieved promising performance. However, the scarcity of high-quality labeled SVD data influences the practicality of these approaches. Therefore, cross-project software vulnerability detection (CSVD) has gradually attracted the attention of researchers since CSVD can utilize the labeled SVD data from the source project to construct an effective CSVD model for the target project via transfer learning. However, if a certain number of program modules in the target project can be labeled by security experts, it can help to improve CSVD model performance by effectively utilizing similar SVD data in the source project. For this more practical CSVD scenario, we propose a novel approach CSVD-TF via the transfer learning method TrAdaBoost. Moreover, we find expert metrics and semantic metrics extracted from the functions show a certain complementary in our investigated scenario. Therefore, we utilize a model-level metric fusion method to further improve the performance. We perform a comprehensive study to evaluate the effectiveness of CSVD-TF on four real-world projects. Our empirical results show that CSVD-TF can achieve performance improvements of 7.5% to 24.6% in terms of AUC when compared to five state-of-the-art baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
彭于晏应助世良采纳,获得10
3秒前
3秒前
8秒前
9秒前
GIA完成签到,获得积分10
11秒前
饭团不吃鱼完成签到,获得积分10
19秒前
ceeray23应助科研通管家采纳,获得10
26秒前
ceeray23应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
ceeray23应助科研通管家采纳,获得10
26秒前
27秒前
27秒前
炙热的雪糕完成签到,获得积分10
29秒前
gbb发布了新的文献求助10
31秒前
LXZ发布了新的文献求助10
34秒前
willlee完成签到 ,获得积分10
34秒前
35秒前
37秒前
脑洞疼应助哈皮波采纳,获得10
38秒前
世良发布了新的文献求助10
43秒前
43秒前
gbb完成签到,获得积分10
43秒前
体贴花卷发布了新的文献求助10
46秒前
ddddddd完成签到 ,获得积分10
47秒前
50秒前
52秒前
哈皮波发布了新的文献求助10
53秒前
暖暖完成签到,获得积分10
55秒前
哈皮波完成签到,获得积分10
1分钟前
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
1分钟前
搜集达人应助体贴花卷采纳,获得10
1分钟前
1分钟前
科研通AI6应助xiaozhou采纳,获得10
1分钟前
Lifel完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ava应助xiaozhou采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399