已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CSVD-TF: Cross-project software vulnerability detection with TrAdaBoost by fusing expert metrics and semantic metrics

计算机科学 公制(单位) 机器学习 学习迁移 人工智能 脆弱性(计算) 软件 数据挖掘 构造(python库) 运营管理 计算机安全 经济 程序设计语言
作者
Zhilong Cai,Yongwei Cai,Xiang Chen,Guilong Lu,Wenlong Pei,J. Leon Zhao
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:213: 112038-112038
标识
DOI:10.1016/j.jss.2024.112038
摘要

Recently, deep learning-based software vulnerability detection (SVD) approaches have achieved promising performance. However, the scarcity of high-quality labeled SVD data influences the practicality of these approaches. Therefore, cross-project software vulnerability detection (CSVD) has gradually attracted the attention of researchers since CSVD can utilize the labeled SVD data from the source project to construct an effective CSVD model for the target project via transfer learning. However, if a certain number of program modules in the target project can be labeled by security experts, it can help to improve CSVD model performance by effectively utilizing similar SVD data in the source project. For this more practical CSVD scenario, we propose a novel approach CSVD-TF via the transfer learning method TrAdaBoost. Moreover, we find expert metrics and semantic metrics extracted from the functions show a certain complementary in our investigated scenario. Therefore, we utilize a model-level metric fusion method to further improve the performance. We perform a comprehensive study to evaluate the effectiveness of CSVD-TF on four real-world projects. Our empirical results show that CSVD-TF can achieve performance improvements of 7.5% to 24.6% in terms of AUC when compared to five state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shinn发布了新的文献求助10
4秒前
iui飞发布了新的文献求助10
5秒前
科研通AI6应助xiaozhang采纳,获得10
13秒前
嘻嘻完成签到,获得积分10
14秒前
16秒前
19秒前
Jourmore完成签到,获得积分0
22秒前
火苗发布了新的文献求助10
22秒前
Cecilia发布了新的文献求助30
23秒前
23秒前
24秒前
27秒前
27秒前
chanyi完成签到,获得积分10
28秒前
ydy发布了新的文献求助10
28秒前
28秒前
28秒前
29秒前
30秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
32秒前
33秒前
33秒前
33秒前
shinn发布了新的文献求助20
33秒前
33秒前
33秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401201
求助须知:如何正确求助?哪些是违规求助? 4520159
关于积分的说明 14078918
捐赠科研通 4433242
什么是DOI,文献DOI怎么找? 2434032
邀请新用户注册赠送积分活动 1426212
关于科研通互助平台的介绍 1404800