Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence

计算机科学 图形 人工智能 联营 卷积神经网络 图形数据库 功率图分析 深度学习 机器学习 理论计算机科学
作者
Uzair Aslam Bhatti,Hao Tang,Guilu Wu,Shah Marjan,Aamir Hussain
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2023: 1-28 被引量:112
标识
DOI:10.1155/2023/8342104
摘要

Convolutional neural networks (CNNs) have received widespread attention due to their powerful modeling capabilities and have been successfully applied in natural language processing, image recognition, and other fields. On the other hand, traditional CNN can only deal with Euclidean spatial data. In contrast, many real-life scenarios, such as transportation networks, social networks, reference networks, and so on, exist in graph data. The creation of graph convolution operators and graph pooling is at the heart of migrating CNN to graph data analysis and processing. With the advancement of the Internet and technology, graph convolution network (GCN), as an innovative technology in artificial intelligence (AI), has received more and more attention. GCN has been widely used in different fields such as image processing, intelligent recommender system, knowledge-based graph, and other areas due to their excellent characteristics in processing non-European spatial data. At the same time, communication networks have also embraced AI technology in recent years, and AI serves as the brain of the future network and realizes the comprehensive intelligence of the future grid. Many complex communication network problems can be abstracted as graph-based optimization problems and solved by GCN, thus overcoming the limitations of traditional methods. This survey briefly describes the definition of graph-based machine learning, introduces different types of graph networks, summarizes the application of GCN in various research fields, analyzes the research status, and gives the future research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助弥淮采纳,获得10
1秒前
姆姆没买发布了新的文献求助20
2秒前
betty完成签到,获得积分10
4秒前
JamesPei应助张张采纳,获得10
4秒前
5秒前
xuxuxu发布了新的文献求助10
6秒前
lilili完成签到,获得积分20
6秒前
粗暴的醉卉完成签到,获得积分10
6秒前
betty发布了新的文献求助10
7秒前
loong完成签到,获得积分10
8秒前
fan完成签到 ,获得积分10
9秒前
9秒前
Jasper应助江浙涵涵采纳,获得10
10秒前
爆米花应助任小九采纳,获得10
10秒前
chris发布了新的文献求助10
11秒前
超人爱吃菠菜完成签到,获得积分10
12秒前
lilili发布了新的文献求助10
12秒前
15秒前
xx完成签到,获得积分10
15秒前
小机灵鬼儿完成签到,获得积分10
18秒前
19秒前
xuxuxu完成签到,获得积分10
19秒前
YUAN完成签到,获得积分10
19秒前
成就的灵薇完成签到,获得积分10
20秒前
无花果应助七七采纳,获得10
21秒前
22秒前
星辰大海应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
子车茗应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
Owen应助科研通管家采纳,获得10
24秒前
wangli应助科研通管家采纳,获得10
24秒前
24秒前
怕黑紫伊发布了新的文献求助10
25秒前
YUAN发布了新的文献求助10
25秒前
ZZX关闭了ZZX文献求助
26秒前
肖福艳发布了新的文献求助10
27秒前
俭朴的雅彤完成签到,获得积分10
28秒前
踏实的尔柳关注了科研通微信公众号
28秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161167
求助须知:如何正确求助?哪些是违规求助? 2812556
关于积分的说明 7895642
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315977
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112