Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence

计算机科学 图形 人工智能 联营 卷积神经网络 图形数据库 功率图分析 深度学习 机器学习 理论计算机科学
作者
Uzair Aslam Bhatti,Hao Tang,Guilu Wu,Shah Marjan,Aamir Hussain
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2023: 1-28 被引量:160
标识
DOI:10.1155/2023/8342104
摘要

Convolutional neural networks (CNNs) have received widespread attention due to their powerful modeling capabilities and have been successfully applied in natural language processing, image recognition, and other fields. On the other hand, traditional CNN can only deal with Euclidean spatial data. In contrast, many real-life scenarios, such as transportation networks, social networks, reference networks, and so on, exist in graph data. The creation of graph convolution operators and graph pooling is at the heart of migrating CNN to graph data analysis and processing. With the advancement of the Internet and technology, graph convolution network (GCN), as an innovative technology in artificial intelligence (AI), has received more and more attention. GCN has been widely used in different fields such as image processing, intelligent recommender system, knowledge-based graph, and other areas due to their excellent characteristics in processing non-European spatial data. At the same time, communication networks have also embraced AI technology in recent years, and AI serves as the brain of the future network and realizes the comprehensive intelligence of the future grid. Many complex communication network problems can be abstracted as graph-based optimization problems and solved by GCN, thus overcoming the limitations of traditional methods. This survey briefly describes the definition of graph-based machine learning, introduces different types of graph networks, summarizes the application of GCN in various research fields, analyzes the research status, and gives the future research direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
guoguo发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
无花果应助分子筛采纳,获得10
3秒前
小二郎应助夏天采纳,获得10
3秒前
3秒前
sparse_penn完成签到,获得积分10
3秒前
6秒前
wpeng326发布了新的文献求助10
6秒前
7秒前
wqqq完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
freedom发布了新的文献求助10
8秒前
8秒前
黄奥龙完成签到,获得积分10
9秒前
科目三应助云吞哦采纳,获得10
9秒前
bkagyin应助jiajia采纳,获得10
11秒前
慕青应助玿琤采纳,获得10
11秒前
Gilbert发布了新的文献求助10
12秒前
Unbelievable完成签到,获得积分10
12秒前
Akim应助沉默是金12采纳,获得10
12秒前
13秒前
LYPY发布了新的文献求助10
13秒前
14秒前
17秒前
17秒前
英姑应助Gilbert采纳,获得10
18秒前
研友_r8YKvn完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
Wrl发布了新的文献求助10
18秒前
lina完成签到,获得积分10
19秒前
愫浅发布了新的文献求助10
20秒前
隐形曼青应助Ning采纳,获得10
20秒前
wmk发布了新的文献求助10
21秒前
细腻白柏发布了新的文献求助10
22秒前
Tayean完成签到,获得积分10
22秒前
桐桐啊发布了新的文献求助10
23秒前
blue发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660183
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740958
捐赠科研通 2930892
什么是DOI,文献DOI怎么找? 1604709
邀请新用户注册赠送积分活动 757477
科研通“疑难数据库(出版商)”最低求助积分说明 734439