CCF-GNN: A Unified Model Aggregating Appearance, Microenvironment, and Topology for Pathology Image Classification

拓扑(电路) 卷积神经网络 计算机科学 数字化病理学 数字拓扑 人工智能 深度学习 模式识别(心理学) 拓扑空间 数学 一般拓扑结构 离散数学 组合数学 扩展拓扑
作者
Hongxiao Wang,Gang Huang,Zhuo Zhao,Liang Cheng,Anna Juncker‐Jensen,Máté Nagy,Xin Lü,Xiangliang Zhang,Danny Z. Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3179-3193 被引量:7
标识
DOI:10.1109/tmi.2023.3249343
摘要

Pathology images contain rich information of cell appearance, microenvironment, and topology features for cancer analysis and diagnosis. Among such features, topology becomes increasingly important in analysis for cancer immunotherapy. By analyzing geometric and hierarchically structured cell distribution topology, oncologists can identify densely-packed and cancer-relevant cell communities (CCs) for making decisions. Compared to commonly-used pixel-level Convolution Neural Network (CNN) features and cell-instance-level Graph Neural Network (GNN) features, CC topology features are at a higher level of granularity and geometry. However, topological features have not been well exploited by recent deep learning (DL) methods for pathology image classification due to lack of effective topological descriptors for cell distribution and gathering patterns. In this paper, inspired by clinical practice, we analyze and classify pathology images by comprehensively learning cell appearance, microenvironment, and topology in a fine-to-coarse manner. To describe and exploit topology, we design Cell Community Forest (CCF), a novel graph that represents the hierarchical formulation process of big-sparse CCs from small-dense CCs. Using CCF as a new geometric topological descriptor of tumor cells in pathology images, we propose CCF-GNN, a GNN model that successively aggregates heterogeneous features (e.g., appearance, microenvironment) from cell-instance-level, cell-community-level, into image-level for pathology image classification. Extensive cross-validation experiments show that our method significantly outperforms alternative methods on H&E-stained and immunofluorescence images for disease grading tasks with multiple cancer types. Our proposed CCF-GNN establishes a new topological data analysis (TDA) based method, which facilitates integrating multi-level heterogeneous features of point clouds (e.g., for cells) into a unified DL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Manyiu采纳,获得10
刚刚
00发布了新的文献求助10
刚刚
无花果应助小宝爸爸采纳,获得10
1秒前
1秒前
啊啊发布了新的文献求助10
1秒前
yu001完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
quhayley应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
所所应助阿琳采纳,获得10
4秒前
4秒前
超帅沂完成签到,获得积分10
5秒前
5秒前
胡姬花完成签到,获得积分10
6秒前
evak完成签到,获得积分10
6秒前
7秒前
silvia-z发布了新的文献求助30
7秒前
8秒前
淡然鞅发布了新的文献求助10
8秒前
9秒前
平淡的画板完成签到,获得积分10
9秒前
yuni完成签到,获得积分10
9秒前
9秒前
9秒前
彭于晏应助balance采纳,获得10
9秒前
11秒前
fanfan发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038