Topic Integrated Opinion-Based Drug Recommendation With Transformers

变压器 计算机科学 情绪分析 人工智能 自然语言处理 机器学习 能力(人力资源) 情报检索 数据挖掘 心理学 工程类 社会心理学 电气工程 电压
作者
Simi Job,Xiaohui Tao,Yuefeng Li,Lin Li,Jianming Yong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (6): 1676-1686 被引量:2
标识
DOI:10.1109/tetci.2023.3246559
摘要

Information from online platforms is vast, with health related data remaining largely unexplored for the purpose of developing a sentiment-based recommendation model. Though state-of-the-art models such as transformers are being researched in this domain, the model configuration has not been diligently investigated, particularly for deriving quality input for sentiment classification by inlaying contextual embeddings and significant sequence segments. A topic modeling and transformer-based model ( topicT-AttNN ) with LSTM and attention mechanism is proposed in this study for classifying sentiments from drug reviews on three aspects and overall opinion. The sentiment score thus obtained is used as a measure for identifying user-advocated drugs for a condition. The proposed model outperforms baselines for all the aspects with higher test accuracy and F1-scores, with the highest F1-score recorded as 0.9585. The results indicate the significance of LSTM and attention layers for identifying words in documents based on the dominance and the competence of the transformer unit in extracting specific context of words in reviews. With this work, we propose that the transformer architecture can be further enhanced with deep learning techniques by contriving potent layers to form the most optimal framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SEBR发布了新的文献求助10
1秒前
上官若男应助酷炫蛋挞采纳,获得10
2秒前
2秒前
慧仔53完成签到,获得积分10
3秒前
SYLH应助丰富的灵枫采纳,获得10
3秒前
5秒前
彭于晏应助小吴同学采纳,获得10
6秒前
夏冉发布了新的文献求助10
6秒前
慕青应助wang采纳,获得10
6秒前
6秒前
千跃应助EMMA采纳,获得10
10秒前
10秒前
烟花应助山居秋暝采纳,获得10
10秒前
11秒前
ZBY0216完成签到,获得积分10
11秒前
11秒前
桉韵沁完成签到,获得积分10
12秒前
12秒前
高大莺发布了新的文献求助10
13秒前
13秒前
肖雪依发布了新的文献求助10
14秒前
在水一方应助李一帆采纳,获得10
15秒前
15秒前
mianmianyu发布了新的文献求助10
15秒前
夏冉完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
FashionBoy应助kk采纳,获得10
17秒前
17秒前
黑羽发布了新的文献求助10
19秒前
19秒前
嗯呐完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
zyqi完成签到,获得积分10
21秒前
wang发布了新的文献求助10
22秒前
英吉利25发布了新的文献求助30
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350