清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Convolutional neural networks for solving computer vision problems

卷积神经网络 计算机科学 人工智能 人工神经网络 深度学习 图像处理 分割 鉴定(生物学) 过程(计算) 模式识别(心理学) 像素 机器学习 机器视觉 视觉对象识别的认知神经科学 上下文图像分类 计算机视觉 特征提取 图像(数学) 植物 生物 操作系统
作者
O. Zinchenko
出处
期刊:Telekomunìkacìjnì ta ìnformacìjnì tehnologìï [State University of Telecommunications]
卷期号:75 (2) 被引量:1
标识
DOI:10.31673/2412-4338.2022.020411
摘要

This article provides an overview of the main methods of solving computer vision problems of classification, segmentation and image processing, which are implemented in CV systems. Computer vision systems are programmed to perform highly specialized tasks, capable of detecting objects during identification, reading serial numbers, and searching for surface defects. When applying deep learning methods in CV systems, their processing speed on large data sets and the accuracy of image classification/segmentation are significantly increased. Artificial vision systems are able to identify individual pixels according to the relevant features during processing, provide a high-quality result in pattern recognition, image restoration, and fitting part of the image. Although some computer vision algorithms were developed to simulate visual perception, a larger number of proposed methods are able to fully process images and determine their characteristic properties. The scope of application of CV systems will continue to expand, as the need for artificial intelligence systems is growing rapidly. The purpose of this article is to provide a structured review of computer vision technologies based on their advantages and disadvantages. The work summarizes the types of CV-systems with artificial intelligence according to the spectrum of their applications, highlights the main problematic areas of their research, such as recognition, identification and detection. The article reviews convolutional neural networks (CNNs), which are successfully applied to the analysis of visual images in deep learning. CNN architectures in some cases outperform artificial neural networks in classification tasks by their performance. Currently, convolutional neural networks are the main tool for classification and recognition of objects, faces in photographs, recognition of video and audio materials. This paper provides a comparative analysis of well-known CNN models: LeNet 5, AlexNet, VGGNet, GoogLeNet, ResNet and their effectiveness in CV systems. Approaches to the modeling of architectures of convolutional neural networks are proposed, which will allow, in the future, to solve the problem of classification in tasks for computer vision, thereby increasing their performance, accuracy and quality of processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助郜南烟采纳,获得10
1分钟前
1分钟前
郜南烟发布了新的文献求助10
1分钟前
追寻奇迹完成签到 ,获得积分10
1分钟前
小强完成签到 ,获得积分10
1分钟前
梅啦啦完成签到 ,获得积分10
2分钟前
minuxSCI完成签到,获得积分10
2分钟前
zhangguo完成签到 ,获得积分10
2分钟前
受伤的薯片完成签到 ,获得积分10
2分钟前
3分钟前
lamborghini193完成签到,获得积分10
3分钟前
3分钟前
郜南烟发布了新的文献求助10
3分钟前
华仔应助郜南烟采纳,获得10
3分钟前
莎莎完成签到 ,获得积分10
4分钟前
scenery0510完成签到,获得积分10
4分钟前
yi完成签到 ,获得积分10
5分钟前
5分钟前
zxt完成签到,获得积分10
5分钟前
郜南烟发布了新的文献求助10
5分钟前
ww完成签到,获得积分10
5分钟前
飞龙在天完成签到,获得积分10
5分钟前
WerWu完成签到,获得积分10
6分钟前
拼搏问薇完成签到 ,获得积分10
6分钟前
Hiram完成签到,获得积分10
7分钟前
合不着完成签到 ,获得积分10
7分钟前
vbnn完成签到 ,获得积分10
8分钟前
帅气的沧海完成签到 ,获得积分10
8分钟前
古炮完成签到 ,获得积分10
8分钟前
9分钟前
sunny完成签到,获得积分20
9分钟前
金平卢仙发布了新的文献求助10
9分钟前
theo完成签到 ,获得积分10
10分钟前
10分钟前
Jemma31发布了新的文献求助10
10分钟前
10分钟前
cvvvv发布了新的文献求助10
11分钟前
cvvvv完成签到,获得积分10
12分钟前
中中中完成签到 ,获得积分10
12分钟前
imi完成签到 ,获得积分10
13分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146783
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826678
捐赠科研通 2454607
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627723
版权声明 601527