Exploring nonlinear strengthening in polycrystalline metallic materials by machine learning methods and heterostructure design

材料科学 异质结 非线性系统 微观结构 微晶 叠加原理 生物系统 复合材料 冶金 数学分析 数学 生物 物理 光电子学 量子力学
作者
Jinliang Du,Jie Li,Yun Li Feng,Ying Li,Fucheng Zhang
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:164: 103587-103587 被引量:7
标识
DOI:10.1016/j.ijplas.2023.103587
摘要

To improve the strength and plasticity of structural materials, researchers often introduce various strengthening mechanisms such as second-phase strengthening, dislocation strengthening, and back stress strengthening (HDI). Due to the interaction of multiple mechanisms, the linear superposition relationship has a poor fitting effect and is only used for rough calculations of the strengthening mechanisms. In this study, the transfer learning data was used to optimize the deep learning network structure (Re-CNN) based on the residual algorithm, and the yield strength prediction physical neural informed model (PNIM) of polycrystalline metallic materials was established. To promote the industrial application of the heterostructure design method, a medium carbon steel heterostructure design strategy based on the existing equipment of the factory was proposed. Medium-carbon heterostructure materials (MHSM) with mixed strengthening mechanisms were successfully prepared. MHSM exhibits excellent comprehensive mechanical properties. When a linear relationship is used to describe the MHSM yield strength, there is a large error, while Re-CNN shows satisfactory prediction accuracy. The linear relationship is incompatible with homogeneous structure materials and heterogeneous structure materials, and its universality is lower than that of nonlinear Re-CNN. Re-CNN shows high cross-scale prediction ability and can be compatible with homogeneous microstructures and heterogeneous microstructures. Using the heterogeneity evolution characteristics of MHSM, the key factors deviating from the linear relationship were revealed. The overestimation and underestimation of the linear relation are demonstrated by Taylor factor and TEM analysis to be caused by the multiscale properties of ferrite, the behavior of the second phase particles, and the interaction of various mechanisms. This study provides a new idea for the cross-scale calculation of the mechanical properties of polycrystalline metallic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
刚刚
1秒前
tang完成签到,获得积分10
1秒前
MMMMM发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
沈文远发布了新的文献求助10
2秒前
2秒前
仇悦发布了新的文献求助10
2秒前
都是发布了新的文献求助30
2秒前
雪球完成签到,获得积分10
2秒前
青年晚报完成签到,获得积分10
2秒前
朱加凤完成签到,获得积分10
3秒前
叼得医完成签到,获得积分10
3秒前
江江发布了新的文献求助10
4秒前
Niar完成签到 ,获得积分10
4秒前
汉堡包应助2531采纳,获得10
5秒前
zh完成签到,获得积分20
5秒前
Stella发布了新的文献求助10
5秒前
封半凡发布了新的文献求助10
5秒前
Anna完成签到,获得积分10
6秒前
科研通AI2S应助润泽采纳,获得10
6秒前
李爱国应助无限毛豆采纳,获得10
7秒前
zdu发布了新的文献求助10
7秒前
刘大大发布了新的文献求助10
7秒前
科目三应助笑点低千愁采纳,获得10
7秒前
lyn完成签到,获得积分10
8秒前
zdy完成签到,获得积分10
8秒前
越越完成签到,获得积分20
8秒前
8秒前
9秒前
Akim应助尔玉采纳,获得10
9秒前
哈哈哈完成签到,获得积分10
10秒前
bkagyin应助zh采纳,获得10
10秒前
小可发布了新的文献求助10
10秒前
Akim应助追寻荔枝采纳,获得10
11秒前
99999sun发布了新的文献求助10
12秒前
cocolu应助仇悦采纳,获得10
13秒前
啦啦啦发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397