Exploring nonlinear strengthening in polycrystalline metallic materials by machine learning methods and heterostructure design

材料科学 异质结 非线性系统 微观结构 微晶 材料的强化机理 叠加原理 复合材料 冶金 数学分析 数学 光电子学 量子力学 物理
作者
Jinliang Du,Jie Li,Yunli Feng,Ying Li,Fucheng Zhang
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:164: 103587-103587 被引量:9
标识
DOI:10.1016/j.ijplas.2023.103587
摘要

To improve the strength and plasticity of structural materials, researchers often introduce various strengthening mechanisms such as second-phase strengthening, dislocation strengthening, and back stress strengthening (HDI). Due to the interaction of multiple mechanisms, the linear superposition relationship has a poor fitting effect and is only used for rough calculations of the strengthening mechanisms. In this study, the transfer learning data was used to optimize the deep learning network structure (Re-CNN) based on the residual algorithm, and the yield strength prediction physical neural informed model (PNIM) of polycrystalline metallic materials was established. To promote the industrial application of the heterostructure design method, a medium carbon steel heterostructure design strategy based on the existing equipment of the factory was proposed. Medium-carbon heterostructure materials (MHSM) with mixed strengthening mechanisms were successfully prepared. MHSM exhibits excellent comprehensive mechanical properties. When a linear relationship is used to describe the MHSM yield strength, there is a large error, while Re-CNN shows satisfactory prediction accuracy. The linear relationship is incompatible with homogeneous structure materials and heterogeneous structure materials, and its universality is lower than that of nonlinear Re-CNN. Re-CNN shows high cross-scale prediction ability and can be compatible with homogeneous microstructures and heterogeneous microstructures. Using the heterogeneity evolution characteristics of MHSM, the key factors deviating from the linear relationship were revealed. The overestimation and underestimation of the linear relation are demonstrated by Taylor factor and TEM analysis to be caused by the multiscale properties of ferrite, the behavior of the second phase particles, and the interaction of various mechanisms. This study provides a new idea for the cross-scale calculation of the mechanical properties of polycrystalline metallic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寄寄寄寄寄了应助ZYao65采纳,获得10
刚刚
小二郎应助朝暮星河采纳,获得10
1秒前
1秒前
英俊的铭应助激昂的南烟采纳,获得10
2秒前
Nemo97完成签到,获得积分10
2秒前
荒天帝石昊完成签到,获得积分10
2秒前
甜美无剑发布了新的文献求助10
4秒前
gyhuang发布了新的文献求助10
4秒前
风从虎完成签到 ,获得积分10
4秒前
4秒前
小宋发布了新的文献求助10
5秒前
6秒前
Sakura发布了新的文献求助10
6秒前
6秒前
6秒前
xu完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
dingding完成签到 ,获得积分20
8秒前
脑洞疼应助OldFly采纳,获得10
8秒前
ZJJ完成签到,获得积分10
8秒前
喂喂喂威发布了新的文献求助10
8秒前
11秒前
英俊的铭应助aaaa采纳,获得10
11秒前
泡泡果发布了新的文献求助10
11秒前
11秒前
gyhuang完成签到,获得积分10
11秒前
落后的小猫咪完成签到,获得积分10
12秒前
12秒前
鲸落发布了新的文献求助10
12秒前
坚定寒天完成签到 ,获得积分10
13秒前
14秒前
zzz发布了新的文献求助10
14秒前
朝暮星河发布了新的文献求助10
14秒前
yby完成签到,获得积分10
16秒前
CJZ关闭了CJZ文献求助
16秒前
谨慎不二发布了新的文献求助30
17秒前
17秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636