已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring nonlinear strengthening in polycrystalline metallic materials by machine learning methods and heterostructure design

材料科学 异质结 非线性系统 微观结构 微晶 材料的强化机理 叠加原理 复合材料 冶金 数学分析 数学 光电子学 量子力学 物理
作者
Jinliang Du,Jie Li,Yunli Feng,Ying Li,Fucheng Zhang
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:164: 103587-103587 被引量:18
标识
DOI:10.1016/j.ijplas.2023.103587
摘要

To improve the strength and plasticity of structural materials, researchers often introduce various strengthening mechanisms such as second-phase strengthening, dislocation strengthening, and back stress strengthening (HDI). Due to the interaction of multiple mechanisms, the linear superposition relationship has a poor fitting effect and is only used for rough calculations of the strengthening mechanisms. In this study, the transfer learning data was used to optimize the deep learning network structure (Re-CNN) based on the residual algorithm, and the yield strength prediction physical neural informed model (PNIM) of polycrystalline metallic materials was established. To promote the industrial application of the heterostructure design method, a medium carbon steel heterostructure design strategy based on the existing equipment of the factory was proposed. Medium-carbon heterostructure materials (MHSM) with mixed strengthening mechanisms were successfully prepared. MHSM exhibits excellent comprehensive mechanical properties. When a linear relationship is used to describe the MHSM yield strength, there is a large error, while Re-CNN shows satisfactory prediction accuracy. The linear relationship is incompatible with homogeneous structure materials and heterogeneous structure materials, and its universality is lower than that of nonlinear Re-CNN. Re-CNN shows high cross-scale prediction ability and can be compatible with homogeneous microstructures and heterogeneous microstructures. Using the heterogeneity evolution characteristics of MHSM, the key factors deviating from the linear relationship were revealed. The overestimation and underestimation of the linear relation are demonstrated by Taylor factor and TEM analysis to be caused by the multiscale properties of ferrite, the behavior of the second phase particles, and the interaction of various mechanisms. This study provides a new idea for the cross-scale calculation of the mechanical properties of polycrystalline metallic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱柏松发布了新的文献求助10
1秒前
future完成签到 ,获得积分10
1秒前
呵呵心情发布了新的文献求助10
2秒前
2秒前
科研通AI5应助yuan采纳,获得30
5秒前
开放的从菡完成签到 ,获得积分10
5秒前
川2002发布了新的文献求助10
6秒前
xiao完成签到 ,获得积分10
7秒前
liuwenjie发布了新的文献求助10
8秒前
tomorrow完成签到 ,获得积分10
9秒前
10秒前
10秒前
英俊的铭应助朱柏松采纳,获得10
11秒前
11秒前
迷路凌柏完成签到 ,获得积分10
12秒前
黎明森发布了新的文献求助10
13秒前
14秒前
wsx发布了新的文献求助10
15秒前
大个应助陈1采纳,获得10
16秒前
丘比特应助xxf采纳,获得10
16秒前
星魂发布了新的文献求助10
16秒前
17秒前
18秒前
NLJY完成签到,获得积分10
20秒前
22秒前
yuan给yuan的求助进行了留言
22秒前
23秒前
朱诗佳发布了新的文献求助10
24秒前
24秒前
26秒前
lilili发布了新的文献求助10
27秒前
飞逝的快乐时光完成签到 ,获得积分10
28秒前
文丽完成签到,获得积分10
28秒前
帅气的安柏应助Sssun17采纳,获得30
31秒前
32秒前
恋恋不舍得完成签到,获得积分10
32秒前
陶醉巧凡完成签到,获得积分10
33秒前
Ava应助朴素曼岚采纳,获得10
33秒前
赫如冰完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434