Exploring nonlinear strengthening in polycrystalline metallic materials by machine learning methods and heterostructure design

材料科学 异质结 非线性系统 微观结构 微晶 材料的强化机理 叠加原理 复合材料 冶金 数学分析 数学 光电子学 量子力学 物理
作者
Jinliang Du,Jie Li,Yunli Feng,Ying Li,Fucheng Zhang
出处
期刊:International Journal of Plasticity [Elsevier]
卷期号:164: 103587-103587 被引量:9
标识
DOI:10.1016/j.ijplas.2023.103587
摘要

To improve the strength and plasticity of structural materials, researchers often introduce various strengthening mechanisms such as second-phase strengthening, dislocation strengthening, and back stress strengthening (HDI). Due to the interaction of multiple mechanisms, the linear superposition relationship has a poor fitting effect and is only used for rough calculations of the strengthening mechanisms. In this study, the transfer learning data was used to optimize the deep learning network structure (Re-CNN) based on the residual algorithm, and the yield strength prediction physical neural informed model (PNIM) of polycrystalline metallic materials was established. To promote the industrial application of the heterostructure design method, a medium carbon steel heterostructure design strategy based on the existing equipment of the factory was proposed. Medium-carbon heterostructure materials (MHSM) with mixed strengthening mechanisms were successfully prepared. MHSM exhibits excellent comprehensive mechanical properties. When a linear relationship is used to describe the MHSM yield strength, there is a large error, while Re-CNN shows satisfactory prediction accuracy. The linear relationship is incompatible with homogeneous structure materials and heterogeneous structure materials, and its universality is lower than that of nonlinear Re-CNN. Re-CNN shows high cross-scale prediction ability and can be compatible with homogeneous microstructures and heterogeneous microstructures. Using the heterogeneity evolution characteristics of MHSM, the key factors deviating from the linear relationship were revealed. The overestimation and underestimation of the linear relation are demonstrated by Taylor factor and TEM analysis to be caused by the multiscale properties of ferrite, the behavior of the second phase particles, and the interaction of various mechanisms. This study provides a new idea for the cross-scale calculation of the mechanical properties of polycrystalline metallic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晏小敏完成签到,获得积分10
刚刚
爆米花应助风中寄云采纳,获得10
1秒前
屹舟发布了新的文献求助10
1秒前
Dou完成签到,获得积分10
1秒前
白泯完成签到,获得积分10
2秒前
1ssd发布了新的文献求助10
2秒前
667发布了新的文献求助10
2秒前
小二郎应助辰柒采纳,获得10
3秒前
4秒前
4秒前
clear完成签到,获得积分20
4秒前
4秒前
orixero应助congguitar采纳,获得10
4秒前
Evan完成签到,获得积分10
4秒前
YANG发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助10
5秒前
sunzhiyu233发布了新的文献求助10
6秒前
Raul完成签到 ,获得积分10
6秒前
6秒前
伯尔尼圆白菜完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
buuyoo完成签到,获得积分10
7秒前
科研通AI5应助魏煜佳采纳,获得10
7秒前
LLxiaolong完成签到,获得积分10
7秒前
8秒前
8秒前
巨噬细胞A完成签到,获得积分10
8秒前
8秒前
我要读博士完成签到 ,获得积分10
8秒前
xxq完成签到,获得积分20
8秒前
福气小姐完成签到 ,获得积分10
8秒前
搜集达人应助jjy采纳,获得10
9秒前
9秒前
郑总完成签到,获得积分10
9秒前
CipherSage应助马尼拉采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759