UAV High-Voltage Power Transmission Line Autonomous Correction Inspection System Based on Object Detection

计算机科学 人工智能 目标检测 最小边界框 计算机视觉 电力传输 骨干网 对象(语法) 频道(广播) 特征(语言学) 卷积(计算机科学) 光学(聚焦) 特征提取 职位(财务) 人工神经网络 图像(数学) 工程类 模式识别(心理学) 电气工程 语言学 哲学 财务 经济 计算机网络 物理 光学
作者
Ziran Li,Qi Wang,Tianyi Zhang,Cheng Ju,Satoshi Suzuki,Akio Namiki
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 10215-10230 被引量:36
标识
DOI:10.1109/jsen.2023.3260360
摘要

With the development of technology, unmanned aerial vehicles (UAVs) are playing an increasingly important role in the inspection of high-voltage power transmission line. The traditional inspection method relies on the operator to manually control the drone for inspection. Although many companies are using real-time dynamic carrier phase differencing technology to achieve high-precision positioning of UAVs, when UAVs fly autonomously at high altitudes to photograph specific objects, the objects tend to deviate from the center of the picture. To address this error, in this article, an autonomous UAV inspection system based on object detection is designed: 1) to detect inspection objects, the corresponding dataset is established on the basis of the UAV autonomous inspection task; 2) to obtain the position information of the target object, a lightweight object detector based on the YOLOX network model is designed. First, the backbone is replaced with MobileNetv3. Next, in the neck structure, the Ghost module is introduced and depthwise convolution is applied instead of normal convolution. Then, to embed the location information into the channel attention, coordinate attention (CA) is introduced after the output feature layer of the backbone, enabling the lightweight network to operate on a larger area of focus. Finally, to improve the accuracy of the bounding box regression, the ${\alpha }$ -distance-IoU (DIOU) loss function is introduced; 3) to obtain the best image acquisition position, the results of object detection combined with the real-time status of the UAV are used; and 4) to enable the UAV to complete the final corrections, position control and altitude control are used. Compared with the original YOLOX_tiny, the new model improves the mAP_0.5:0.95 metric by about 2% points, with a significant reduction in the number of parameters and computation, while running at 56 frames/s on Nvidia NX. This system can effectively solve the problem of the target deviating from the center of the picture when the UAV takes pictures during a high-altitude autonomous inspection, verified by many actual flight experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助AY采纳,获得10
1秒前
1秒前
23完成签到,获得积分20
1秒前
葛葛发布了新的文献求助20
1秒前
充电宝应助Wff采纳,获得10
2秒前
2秒前
飘逸楷瑞发布了新的文献求助10
2秒前
2秒前
哭泣海豚完成签到,获得积分10
2秒前
Akim应助奕_yinb采纳,获得10
2秒前
3秒前
infe完成签到,获得积分10
3秒前
红3完成签到,获得积分10
3秒前
3秒前
guowoo完成签到,获得积分10
3秒前
3秒前
3秒前
李健应助甜甜的又柔采纳,获得10
4秒前
Hello应助尊敬跳跳糖采纳,获得10
4秒前
Lucas应助caoyy采纳,获得10
5秒前
5秒前
张洁杰完成签到,获得积分10
5秒前
红3发布了新的文献求助10
5秒前
安息发布了新的文献求助10
6秒前
6秒前
ZeKaWa应助烁烁子采纳,获得10
7秒前
斯文败类应助烁烁子采纳,获得10
7秒前
ZeKaWa应助烁烁子采纳,获得10
7秒前
酷波er应助烁烁子采纳,获得10
7秒前
8秒前
8秒前
我是老大应助cz采纳,获得10
8秒前
zhy发布了新的文献求助50
8秒前
Jankin发布了新的文献求助10
8秒前
lili完成签到,获得积分10
9秒前
无极微光应助林加雄采纳,获得20
9秒前
9秒前
9秒前
吴丽萍完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827