UAV High-Voltage Power Transmission Line Autonomous Correction Inspection System Based on Object Detection

计算机科学 人工智能 目标检测 最小边界框 计算机视觉 电力传输 骨干网 对象(语法) 频道(广播) 特征(语言学) 卷积(计算机科学) 光学(聚焦) 特征提取 职位(财务) 人工神经网络 图像(数学) 工程类 模式识别(心理学) 电气工程 语言学 哲学 财务 经济 计算机网络 物理 光学
作者
Ziran Li,Qi Wang,Tianyi Zhang,Cheng Ju,Satoshi Suzuki,Akio Namiki
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 10215-10230 被引量:11
标识
DOI:10.1109/jsen.2023.3260360
摘要

With the development of technology, unmanned aerial vehicles (UAVs) are playing an increasingly important role in the inspection of high-voltage power transmission line. The traditional inspection method relies on the operator to manually control the drone for inspection. Although many companies are using real-time dynamic carrier phase differencing technology to achieve high-precision positioning of UAVs, when UAVs fly autonomously at high altitudes to photograph specific objects, the objects tend to deviate from the center of the picture. To address this error, in this article, an autonomous UAV inspection system based on object detection is designed: 1) to detect inspection objects, the corresponding dataset is established on the basis of the UAV autonomous inspection task; 2) to obtain the position information of the target object, a lightweight object detector based on the YOLOX network model is designed. First, the backbone is replaced with MobileNetv3. Next, in the neck structure, the Ghost module is introduced and depthwise convolution is applied instead of normal convolution. Then, to embed the location information into the channel attention, coordinate attention (CA) is introduced after the output feature layer of the backbone, enabling the lightweight network to operate on a larger area of focus. Finally, to improve the accuracy of the bounding box regression, the ${\alpha }$ -distance-IoU (DIOU) loss function is introduced; 3) to obtain the best image acquisition position, the results of object detection combined with the real-time status of the UAV are used; and 4) to enable the UAV to complete the final corrections, position control and altitude control are used. Compared with the original YOLOX_tiny, the new model improves the mAP_0.5:0.95 metric by about 2% points, with a significant reduction in the number of parameters and computation, while running at 56 frames/s on Nvidia NX. This system can effectively solve the problem of the target deviating from the center of the picture when the UAV takes pictures during a high-altitude autonomous inspection, verified by many actual flight experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL发布了新的文献求助10
1秒前
dmy发布了新的文献求助10
2秒前
singlestrand发布了新的文献求助10
3秒前
4秒前
Vianne完成签到,获得积分20
6秒前
Masaccy完成签到,获得积分10
6秒前
华安完成签到,获得积分10
7秒前
8秒前
弹指一挥间关注了科研通微信公众号
8秒前
破忒头发布了新的文献求助10
9秒前
面包人发布了新的文献求助10
10秒前
冤家Gg应助齐齐采纳,获得10
10秒前
captainHc发布了新的文献求助10
11秒前
12秒前
发10篇SCI发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
14秒前
黑闷蛋完成签到,获得积分10
15秒前
都是发布了新的文献求助10
15秒前
16秒前
Bruce发布了新的文献求助10
16秒前
未夕晴发布了新的文献求助20
17秒前
你当像鸟飞往你的山完成签到,获得积分10
18秒前
21秒前
gjww完成签到,获得积分0
21秒前
21秒前
YE发布了新的文献求助10
22秒前
杜玉涵完成签到 ,获得积分10
22秒前
23秒前
may发布了新的文献求助10
23秒前
loulan发布了新的文献求助10
23秒前
破忒头完成签到,获得积分10
24秒前
向语风完成签到,获得积分10
24秒前
Wwhy发布了新的文献求助10
25秒前
瑞瑞发布了新的文献求助10
25秒前
reporror完成签到,获得积分10
25秒前
25秒前
完美星落完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158178
求助须知:如何正确求助?哪些是违规求助? 2809497
关于积分的说明 7882282
捐赠科研通 2467982
什么是DOI,文献DOI怎么找? 1313837
科研通“疑难数据库(出版商)”最低求助积分说明 630558
版权声明 601943