UAV High-Voltage Power Transmission Line Autonomous Correction Inspection System Based on Object Detection

计算机科学 人工智能 目标检测 最小边界框 计算机视觉 电力传输 骨干网 对象(语法) 频道(广播) 特征(语言学) 卷积(计算机科学) 光学(聚焦) 特征提取 职位(财务) 人工神经网络 图像(数学) 工程类 模式识别(心理学) 电气工程 语言学 哲学 财务 经济 计算机网络 物理 光学
作者
Ziran Li,Qi Wang,Tianyi Zhang,Cheng Ju,Satoshi Suzuki,Akio Namiki
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 10215-10230 被引量:36
标识
DOI:10.1109/jsen.2023.3260360
摘要

With the development of technology, unmanned aerial vehicles (UAVs) are playing an increasingly important role in the inspection of high-voltage power transmission line. The traditional inspection method relies on the operator to manually control the drone for inspection. Although many companies are using real-time dynamic carrier phase differencing technology to achieve high-precision positioning of UAVs, when UAVs fly autonomously at high altitudes to photograph specific objects, the objects tend to deviate from the center of the picture. To address this error, in this article, an autonomous UAV inspection system based on object detection is designed: 1) to detect inspection objects, the corresponding dataset is established on the basis of the UAV autonomous inspection task; 2) to obtain the position information of the target object, a lightweight object detector based on the YOLOX network model is designed. First, the backbone is replaced with MobileNetv3. Next, in the neck structure, the Ghost module is introduced and depthwise convolution is applied instead of normal convolution. Then, to embed the location information into the channel attention, coordinate attention (CA) is introduced after the output feature layer of the backbone, enabling the lightweight network to operate on a larger area of focus. Finally, to improve the accuracy of the bounding box regression, the ${\alpha }$ -distance-IoU (DIOU) loss function is introduced; 3) to obtain the best image acquisition position, the results of object detection combined with the real-time status of the UAV are used; and 4) to enable the UAV to complete the final corrections, position control and altitude control are used. Compared with the original YOLOX_tiny, the new model improves the mAP_0.5:0.95 metric by about 2% points, with a significant reduction in the number of parameters and computation, while running at 56 frames/s on Nvidia NX. This system can effectively solve the problem of the target deviating from the center of the picture when the UAV takes pictures during a high-altitude autonomous inspection, verified by many actual flight experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的皮卡丘完成签到,获得积分10
刚刚
he发布了新的文献求助10
1秒前
1秒前
Mark完成签到,获得积分20
1秒前
西柚完成签到,获得积分10
1秒前
无忧诀完成签到,获得积分10
1秒前
小鹿斑比发布了新的文献求助10
1秒前
2秒前
韵寒发布了新的文献求助10
2秒前
2秒前
lyh发布了新的文献求助10
2秒前
SciGPT应助kaka7采纳,获得10
2秒前
3秒前
刘天义完成签到,获得积分10
3秒前
SCO发布了新的文献求助10
3秒前
隐形曼青应助饼饼采纳,获得10
3秒前
Lq应助行行行采纳,获得30
3秒前
4秒前
YAN应助玩命的囧采纳,获得10
4秒前
汉堡包应助尽落采纳,获得10
4秒前
汉堡包应助cancan采纳,获得10
5秒前
5秒前
谨慎的小甜瓜完成签到,获得积分20
5秒前
有趣的桃应助彩色的向珊采纳,获得10
5秒前
兰真纯洁发布了新的文献求助10
5秒前
妙旋克里斯完成签到,获得积分10
6秒前
月与海发布了新的文献求助10
6秒前
6秒前
王kk发布了新的文献求助10
6秒前
wang完成签到,获得积分10
6秒前
杨莉给杨莉的求助进行了留言
6秒前
艾登登发布了新的文献求助10
7秒前
7秒前
星辰大海应助banana采纳,获得10
7秒前
韵寒完成签到,获得积分10
7秒前
7秒前
Yosiya发布了新的文献求助10
8秒前
cxy发布了新的文献求助10
8秒前
慕阳完成签到,获得积分20
8秒前
yznfly举报冷傲半邪求助涉嫌违规
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233