UAV High-Voltage Power Transmission Line Autonomous Correction Inspection System Based on Object Detection

计算机科学 人工智能 目标检测 最小边界框 计算机视觉 电力传输 骨干网 对象(语法) 频道(广播) 特征(语言学) 卷积(计算机科学) 光学(聚焦) 特征提取 职位(财务) 人工神经网络 图像(数学) 工程类 模式识别(心理学) 电气工程 语言学 哲学 财务 经济 计算机网络 物理 光学
作者
Ziran Li,Qi Wang,Tianyi Zhang,Cheng Ju,Satoshi Suzuki,Akio Namiki
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 10215-10230 被引量:36
标识
DOI:10.1109/jsen.2023.3260360
摘要

With the development of technology, unmanned aerial vehicles (UAVs) are playing an increasingly important role in the inspection of high-voltage power transmission line. The traditional inspection method relies on the operator to manually control the drone for inspection. Although many companies are using real-time dynamic carrier phase differencing technology to achieve high-precision positioning of UAVs, when UAVs fly autonomously at high altitudes to photograph specific objects, the objects tend to deviate from the center of the picture. To address this error, in this article, an autonomous UAV inspection system based on object detection is designed: 1) to detect inspection objects, the corresponding dataset is established on the basis of the UAV autonomous inspection task; 2) to obtain the position information of the target object, a lightweight object detector based on the YOLOX network model is designed. First, the backbone is replaced with MobileNetv3. Next, in the neck structure, the Ghost module is introduced and depthwise convolution is applied instead of normal convolution. Then, to embed the location information into the channel attention, coordinate attention (CA) is introduced after the output feature layer of the backbone, enabling the lightweight network to operate on a larger area of focus. Finally, to improve the accuracy of the bounding box regression, the ${\alpha }$ -distance-IoU (DIOU) loss function is introduced; 3) to obtain the best image acquisition position, the results of object detection combined with the real-time status of the UAV are used; and 4) to enable the UAV to complete the final corrections, position control and altitude control are used. Compared with the original YOLOX_tiny, the new model improves the mAP_0.5:0.95 metric by about 2% points, with a significant reduction in the number of parameters and computation, while running at 56 frames/s on Nvidia NX. This system can effectively solve the problem of the target deviating from the center of the picture when the UAV takes pictures during a high-altitude autonomous inspection, verified by many actual flight experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助无奈的伊采纳,获得10
1秒前
幽幽完成签到,获得积分10
2秒前
Owen应助茶凉人散采纳,获得10
2秒前
5秒前
失眠呆呆鱼完成签到 ,获得积分10
6秒前
安静羿完成签到,获得积分10
6秒前
我是老大应助良辰采纳,获得10
7秒前
llll发布了新的文献求助10
7秒前
充电宝应助中央戏精学院采纳,获得10
7秒前
11秒前
12秒前
脑洞疼应助Z小姐采纳,获得10
12秒前
茶凉人散完成签到,获得积分10
13秒前
周淼完成签到,获得积分10
13秒前
蒸小征发布了新的文献求助10
14秒前
奋斗的朋友完成签到 ,获得积分10
14秒前
善学以致用应助popdragon采纳,获得10
15秒前
科研通AI6.1应助烂漫母鸡采纳,获得10
15秒前
量子星尘发布了新的文献求助10
17秒前
零零完成签到,获得积分10
17秒前
茶凉人散发布了新的文献求助10
18秒前
zmmm完成签到,获得积分10
18秒前
宇智波张三完成签到,获得积分10
18秒前
火箭完成签到,获得积分10
19秒前
19秒前
FashionBoy应助Jayson采纳,获得10
20秒前
充电宝应助热情笑旋采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
晓磊发布了新的文献求助30
24秒前
24秒前
Qwering应助Linyi采纳,获得30
25秒前
25秒前
27秒前
29秒前
30秒前
量子星尘发布了新的文献求助10
32秒前
33秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777833
求助须知:如何正确求助?哪些是违规求助? 5635925
关于积分的说明 15446909
捐赠科研通 4909743
什么是DOI,文献DOI怎么找? 2641858
邀请新用户注册赠送积分活动 1589781
关于科研通互助平台的介绍 1544290