析氧
电催化剂
催化作用
电化学
双金属片
氧气
镍
钴
过渡金属
化学
硫黄
金属
电解质
无机化学
材料科学
化学工程
电极
物理化学
冶金
有机化学
工程类
作者
Yang Hu,Yao Zheng,Jing Jin,Yantao Wang,Yong Peng,Jie Yin,Wei Shen,Yichao Hou,Liu Zhu,Li An,Min Lu,Pinxian Xi,Chun‐Hua Yan
标识
DOI:10.1038/s41467-023-37751-y
摘要
Dynamic reconstruction of metal sulphides during electrocatalytic oxygen evolution reaction (OER) has hampered the acquisition of legible evidence for comprehensively understanding the phase-transition mechanism and electrocatalytic activity origin. Herein, modelling on a series of cobalt-nickel bimetallic sulphides, we for the first time establish an explicit and comprehensive picture of their dynamic phase evaluation pathway at the pre-catalytic stage before OER process. By utilizing the in-situ electrochemical transmission electron microscopy and electron energy loss spectroscopy, the lattice sulphur atoms of (NiCo)S1.33 particles are revealed to be partially substituted by oxygen from electrolyte to form a lattice oxygen-sulphur coexisting shell surface before the generation of reconstituted active species. Such S-O exchange process is benefitted from the subtle modulation of metal-sulphur coordination form caused by the specific Ni and Co occupation. This unique oxygen-substitution behaviour produces an (NiCo)OxS1.33-x surface to reduce the energy barrier of surface reconstruction for converting sulphides into active oxy/hydroxide derivative, therefore significantly increasing the proportion of lattice oxygen-mediated mechanism compared to the pure sulphide surface. We anticipate this direct observation can provide an explicit picture of catalysts' structural and compositional evolution during the electrocatalytic process.
科研通智能强力驱动
Strongly Powered by AbleSci AI