亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FxHENN: FPGA-based acceleration framework for homomorphic encrypted CNN inference

计算机科学 现场可编程门阵列 推论 加速 卷积神经网络 硬件加速 设计空间探索 计算机工程 加密 嵌入式系统 并行计算 人工智能 操作系统
作者
Yilan Zhu,Xinyao Wang,Lei Ju,Shanqing Guo
标识
DOI:10.1109/hpca56546.2023.10071133
摘要

Fully homomorphic encryption (FHE) is a promising data privacy solution for machine learning, which allows the inference to be performed with encrypted data. However, it typically leads to 5-6 orders of magnitude higher computation and storage overhead. This paper proposes the first full-fledged FPGA acceleration framework for FHE-based convolution neural network (HE-CNN) inference. We then design parameterized HE operation modules with intra- and inter- HE-CNN layer resource management based on FPGA high-level synthesis (HLS) design flow. With sophisticated resource and performance modeling of the HE operation modules, the proposed FxHENN framework automatically performs design space exploration to determine the optimized resource provisioning and generates the accelerator circuit for a given HE-CNN model on a target FPGA device. Compared with the state-of-the-art CPU-based HE-CNN inference solution, FxHENN achieves up to 13.49X speedup of inference latency, and 1187.12X energy efficiency. Meanwhile, given this is the first attempt in the literature on FPGA acceleration of fullfledged non-interactive HE-CNN inference, our results obtained on low-power FPGA devices demonstrate HE-CNN inference for edge and embedded computing is practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Timelapse发布了新的文献求助10
4秒前
16秒前
黑摄会阿Fay完成签到,获得积分10
17秒前
BowieHuang应助Timelapse采纳,获得10
21秒前
甜橙完成签到 ,获得积分10
23秒前
23秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
NattyPoe应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得20
31秒前
34秒前
852应助一碗鱼采纳,获得10
47秒前
wanci应助andrele采纳,获得10
51秒前
52秒前
量子星尘发布了新的文献求助10
53秒前
1分钟前
一碗鱼发布了新的文献求助10
1分钟前
1分钟前
theo完成签到 ,获得积分10
1分钟前
糕冷草莓完成签到,获得积分10
1分钟前
英姑应助一碗鱼采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
一碗鱼完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
小糊涂仙儿完成签到 ,获得积分10
3分钟前
3分钟前
Isabelle发布了新的文献求助10
3分钟前
Timelapse发布了新的文献求助10
3分钟前
ZhiyunXu2012完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
惘然111222发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423