Learning data teaching strategies via knowledge tracing

计算机科学 追踪 任务(项目管理) 联营 主动学习(机器学习) 机器学习 人工智能 管理 经济 操作系统
作者
Ghodai Abdelrahman,Qing Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:269: 110511-110511 被引量:1
标识
DOI:10.1016/j.knosys.2023.110511
摘要

Teaching plays a fundamental role in human learning. Typically, a human teaching strategy involves assessing a student’s knowledge progress for tailoring the teaching materials to enhance the learning progress. A human teacher can achieve this by tracing a student’s knowledge over essential learning concepts in a task. Albeit, such a teaching strategy is not well exploited yet in machine learning as current machine teaching methods tend to directly assess the progress of individual training samples without paying attention to the underlying learning concepts in a learning task. In this paper, we propose a novel method, called Knowledge Augmented Data Teaching (KADT), which can optimize a data teaching strategy for a student model by tracing its knowledge progress over multiple learning concepts in a learning task. Specifically, the KADT method incorporates a knowledge tracing model to dynamically capture the knowledge progress of a student model in terms of latent learning concepts. We further develop an attention-pooling mechanism to distill knowledge representations of a student model with respect to class labels, which enables to develop a data teaching strategy on critical training samples. We have evaluated the performance of the KADT method on four different machine learning tasks, including knowledge tracing, sentiment analysis, movie recommendation, and image classification. The KADT method consistently outperforms the state-of-the-art methods on all these tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh发布了新的文献求助10
刚刚
2秒前
lcf发布了新的文献求助10
2秒前
wll完成签到 ,获得积分10
2秒前
3秒前
Bellala发布了新的文献求助10
3秒前
4秒前
香蕉觅云应助一一采纳,获得10
5秒前
香蕉觅云应助hhhhh采纳,获得10
6秒前
jeff发布了新的文献求助10
6秒前
JeremyChi完成签到,获得积分10
9秒前
Hello应助xxpph采纳,获得10
11秒前
Ava应助YUYU采纳,获得10
11秒前
亦木完成签到,获得积分10
11秒前
伍迎海完成签到,获得积分10
12秒前
Ziyi_Xu完成签到,获得积分10
13秒前
邓布利多多完成签到,获得积分10
15秒前
啵啵完成签到,获得积分10
16秒前
18秒前
乐观银耳汤完成签到,获得积分10
20秒前
小陈完成签到,获得积分10
20秒前
21秒前
嘻嘻嘻完成签到,获得积分10
21秒前
所所应助可靠盼旋采纳,获得10
21秒前
21秒前
李天天完成签到,获得积分10
23秒前
23秒前
yj91完成签到,获得积分10
23秒前
23秒前
24秒前
雨翮风翎发布了新的文献求助10
25秒前
苏苏完成签到 ,获得积分10
25秒前
25秒前
852应助G1997采纳,获得10
25秒前
ding应助小陈采纳,获得10
26秒前
酷波er应助研友_8yN60L采纳,获得10
26秒前
27秒前
28秒前
dd发布了新的文献求助10
28秒前
xxpph发布了新的文献求助10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664