亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement

计算机科学 人工智能 卷积神经网络 图像质量 冗余(工程) 残余物 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 算法 图像(数学) 语言学 哲学 操作系统
作者
Minghan Fu,Meiyun Wang,Yaping Wu,Na Zhang,Yongfeng Yang,Haining Wang,Yun Zhou,Yue Shang,Fang‐Xiang Wu,Hairong Zheng,Dong Liang,Zhanli Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2864-2875 被引量:11
标识
DOI:10.1109/jbhi.2023.3260180
摘要

The axial field of view (FOV) is a key factor that affects the quality of PET images. Due to hardware FOV restrictions, conventional short-axis PET scanners with FOVs of 20 to 35 cm can acquire only low-quality PET (LQ-PET) images in fast scanning times (2-3 minutes). To overcome hardware restrictions and improve PET image quality for better clinical diagnoses, several deep learning-based algorithms have been proposed. However, these approaches use simple convolution layers with residual learning and local attention, which insufficiently extract and fuse long-range contextual information. To this end, we propose a novel two-branch network architecture with swin transformer units and graph convolution operation, namely SW-GCN. The proposed SW-GCN provides additional spatial- and channel-wise flexibility to handle different types of input information flow. Specifically, considering the high computational cost of calculating self-attention weights in full-size PET images, in our designed spatial adaptive branch, we take the self-attention mechanism within each local partition window and introduce global information interactions between nonoverlapping windows by shifting operations to prevent the aforementioned problem. In addition, the convolutional network structure considers the information in each channel equally during the feature extraction process. In our designed channel adaptive branch, we use a Watts Strogatz topology structure to connect each feature map to only its most relevant features in each graph convolutional layer, substantially reducing information redundancy. Moreover, ensemble learning is adopted in our SW-GCN for mapping distinct features from the two well-designed branches to the enhanced PET images. We carried out extensive experiments on three single-bed position scans for 386 patients. The test results demonstrate that our proposed SW-GCN approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HanluMa完成签到 ,获得积分10
19秒前
35秒前
无花果应助科研通管家采纳,获得10
38秒前
852应助科研通管家采纳,获得10
38秒前
田様应助科研通管家采纳,获得10
38秒前
pups发布了新的文献求助10
39秒前
好学的泷泷完成签到 ,获得积分10
44秒前
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
1分钟前
Paris完成签到 ,获得积分10
1分钟前
yuki发布了新的文献求助10
1分钟前
yuki完成签到,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
义气的胡完成签到 ,获得积分10
2分钟前
李剑鸿完成签到,获得积分10
3分钟前
SSLL完成签到,获得积分20
3分钟前
SSLL发布了新的文献求助10
3分钟前
万能图书馆应助邋遢大王采纳,获得10
4分钟前
李剑鸿发布了新的文献求助150
4分钟前
4分钟前
lj完成签到 ,获得积分10
5分钟前
5分钟前
LL完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
刘慧发布了新的文献求助10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
星辰大海应助魔幻的小之采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
魔幻的小之完成签到,获得积分10
7分钟前
zhangxiaoqing发布了新的文献求助10
7分钟前
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
KsL2177完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671276
求助须知:如何正确求助?哪些是违规求助? 4914035
关于积分的说明 15134412
捐赠科研通 4830102
什么是DOI,文献DOI怎么找? 2586755
邀请新用户注册赠送积分活动 1540348
关于科研通互助平台的介绍 1498539