A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement

计算机科学 人工智能 卷积神经网络 图像质量 冗余(工程) 残余物 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 算法 图像(数学) 语言学 哲学 操作系统
作者
Minghan Fu,Meiyun Wang,Yaping Wu,Na Zhang,Yang Yongfeng,Meiyun Wang,Yun Zhou,Yue Shang,Fang-Xiang Wu,Hairong Zheng,Liang Dong,Zhanli Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2864-2875 被引量:2
标识
DOI:10.1109/jbhi.2023.3260180
摘要

The axial field of view (FOV) is a key factor that affects the quality of PET images. Due to hardware FOV restrictions, conventional short-axis PET scanners with FOVs of 20 to 35 cm can acquire only low-quality PET (LQ-PET) images in fast scanning times (2–3 minutes). To overcome hardware restrictions and improve PET image quality for better clinical diagnoses, several deep learning-based algorithms have been proposed. However, these approaches use simple convolution layers with residual learning and local attention, which insufficiently extract and fuse long-range contextual information. To this end, we propose a novel two-branch network architecture with swin transformer units and graph convolution operation, namely SW-GCN. The proposed SW-GCN provides additional spatial- and channel-wise flexibility to handle different types of input information flow. Specifically, considering the high computational cost of calculating self-attention weights in full-size PET images, in our designed spatial adaptive branch, we take the self-attention mechanism within each local partition window and introduce global information interactions between nonoverlapping windows by shifting operations to prevent the aforementioned problem. In addition, the convolutional network structure considers the information in each channel equally during the feature extraction process. In our designed channel adaptive branch, we use a Watts Strogatz topology structure to connect each feature map to only its most relevant features in each graph convolutional layer, substantially reducing information redundancy. Moreover, ensemble learning is adopted in our SW-GCN for mapping distinct features from the two well-designed branches to the enhanced PET images. We carried out extensive experiments on three single-bed position scans for 386 patients. The test results demonstrate that our proposed SW-GCN approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wying发布了新的文献求助10
刚刚
科研通AI2S应助宋宋采纳,获得10
1秒前
崔大胖完成签到,获得积分10
1秒前
Ava应助www采纳,获得30
1秒前
1秒前
lucy发布了新的文献求助10
3秒前
科研通AI2S应助虚心幼翠采纳,获得10
4秒前
LawShu完成签到 ,获得积分10
5秒前
5秒前
火星上的枕头完成签到 ,获得积分10
5秒前
木木应助孤独丹秋采纳,获得10
6秒前
8秒前
科研通AI2S应助sqHALO采纳,获得10
11秒前
11秒前
13秒前
无花果应助zzz2193采纳,获得10
13秒前
surain发布了新的文献求助10
13秒前
大力可冥发布了新的文献求助10
16秒前
天意不可违完成签到,获得积分10
16秒前
不冰淇淋完成签到,获得积分10
16秒前
犹豫梨愁完成签到,获得积分10
16秒前
tianji完成签到,获得积分10
23秒前
旋转蒸发发布了新的文献求助10
23秒前
廉锦枫完成签到,获得积分10
24秒前
阿信必发JACS应助大力可冥采纳,获得10
26秒前
领导范儿应助kehan采纳,获得10
28秒前
tangsuyun完成签到,获得积分20
30秒前
31秒前
qaz123完成签到,获得积分10
32秒前
隐形曼青应助超帅采纳,获得10
33秒前
洁净怜寒完成签到,获得积分10
34秒前
yihhhhhhh完成签到 ,获得积分10
36秒前
活泼半凡完成签到 ,获得积分10
36秒前
无语的从云完成签到,获得积分10
38秒前
许南北发布了新的文献求助10
38秒前
40秒前
上官若男应助Dee采纳,获得10
40秒前
saxg_hu完成签到,获得积分10
41秒前
tangsuyun关注了科研通微信公众号
45秒前
烟花应助kakaka采纳,获得10
46秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327851
求助须知:如何正确求助?哪些是违规求助? 2958033
关于积分的说明 8588573
捐赠科研通 2636253
什么是DOI,文献DOI怎么找? 1442882
科研通“疑难数据库(出版商)”最低求助积分说明 668411
邀请新用户注册赠送积分活动 655534