A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement

计算机科学 人工智能 卷积神经网络 图像质量 冗余(工程) 残余物 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 算法 图像(数学) 语言学 哲学 操作系统
作者
Minghan Fu,Meiyun Wang,Yaping Wu,Na Zhang,Yongfeng Yang,Haining Wang,Yun Zhou,Yue Shang,Fang‐Xiang Wu,Hairong Zheng,Dong Liang,Zhanli Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2864-2875 被引量:11
标识
DOI:10.1109/jbhi.2023.3260180
摘要

The axial field of view (FOV) is a key factor that affects the quality of PET images. Due to hardware FOV restrictions, conventional short-axis PET scanners with FOVs of 20 to 35 cm can acquire only low-quality PET (LQ-PET) images in fast scanning times (2-3 minutes). To overcome hardware restrictions and improve PET image quality for better clinical diagnoses, several deep learning-based algorithms have been proposed. However, these approaches use simple convolution layers with residual learning and local attention, which insufficiently extract and fuse long-range contextual information. To this end, we propose a novel two-branch network architecture with swin transformer units and graph convolution operation, namely SW-GCN. The proposed SW-GCN provides additional spatial- and channel-wise flexibility to handle different types of input information flow. Specifically, considering the high computational cost of calculating self-attention weights in full-size PET images, in our designed spatial adaptive branch, we take the self-attention mechanism within each local partition window and introduce global information interactions between nonoverlapping windows by shifting operations to prevent the aforementioned problem. In addition, the convolutional network structure considers the information in each channel equally during the feature extraction process. In our designed channel adaptive branch, we use a Watts Strogatz topology structure to connect each feature map to only its most relevant features in each graph convolutional layer, substantially reducing information redundancy. Moreover, ensemble learning is adopted in our SW-GCN for mapping distinct features from the two well-designed branches to the enhanced PET images. We carried out extensive experiments on three single-bed position scans for 386 patients. The test results demonstrate that our proposed SW-GCN approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
壹吾鱼完成签到,获得积分10
刚刚
1秒前
152van发布了新的文献求助10
1秒前
小衫生完成签到,获得积分20
1秒前
ZhangHaoYuan完成签到,获得积分10
2秒前
隐形曼青应助yu采纳,获得10
3秒前
3秒前
4秒前
5秒前
科研通AI6应助xmingpsy采纳,获得10
5秒前
5秒前
5秒前
华仔应助李楼村采纳,获得10
6秒前
科研通AI6应助xiaofeifantasy采纳,获得10
6秒前
7秒前
7秒前
tongguang发布了新的文献求助10
7秒前
咖啡豆发布了新的文献求助200
8秒前
我是老大应助faye采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
SciGPT应助152van采纳,获得10
9秒前
鲤鱼酸奶发布了新的文献求助20
10秒前
10秒前
科研通AI6应助杨紫宸采纳,获得10
10秒前
高兴断秋发布了新的文献求助10
11秒前
静待花开发布了新的文献求助10
11秒前
12秒前
一条纤维化的鱼完成签到,获得积分10
12秒前
文静的跳跳糖完成签到,获得积分10
12秒前
12秒前
12秒前
机智冬灵完成签到,获得积分10
13秒前
朱妙彤发布了新的文献求助10
13秒前
韩野发布了新的文献求助10
13秒前
14秒前
超级李包包完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906