已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement

计算机科学 人工智能 卷积神经网络 图像质量 冗余(工程) 残余物 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 算法 图像(数学) 语言学 哲学 操作系统
作者
Minghan Fu,Meiyun Wang,Yaping Wu,Na Zhang,Yongfeng Yang,Haining Wang,Yun Zhou,Yue Shang,Fang‐Xiang Wu,Hairong Zheng,Dong Liang,Zhanli Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2864-2875 被引量:11
标识
DOI:10.1109/jbhi.2023.3260180
摘要

The axial field of view (FOV) is a key factor that affects the quality of PET images. Due to hardware FOV restrictions, conventional short-axis PET scanners with FOVs of 20 to 35 cm can acquire only low-quality PET (LQ-PET) images in fast scanning times (2-3 minutes). To overcome hardware restrictions and improve PET image quality for better clinical diagnoses, several deep learning-based algorithms have been proposed. However, these approaches use simple convolution layers with residual learning and local attention, which insufficiently extract and fuse long-range contextual information. To this end, we propose a novel two-branch network architecture with swin transformer units and graph convolution operation, namely SW-GCN. The proposed SW-GCN provides additional spatial- and channel-wise flexibility to handle different types of input information flow. Specifically, considering the high computational cost of calculating self-attention weights in full-size PET images, in our designed spatial adaptive branch, we take the self-attention mechanism within each local partition window and introduce global information interactions between nonoverlapping windows by shifting operations to prevent the aforementioned problem. In addition, the convolutional network structure considers the information in each channel equally during the feature extraction process. In our designed channel adaptive branch, we use a Watts Strogatz topology structure to connect each feature map to only its most relevant features in each graph convolutional layer, substantially reducing information redundancy. Moreover, ensemble learning is adopted in our SW-GCN for mapping distinct features from the two well-designed branches to the enhanced PET images. We carried out extensive experiments on three single-bed position scans for 386 patients. The test results demonstrate that our proposed SW-GCN approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
君莫笑完成签到 ,获得积分10
1秒前
dadabad完成签到 ,获得积分10
1秒前
哭泣忆文完成签到,获得积分10
2秒前
祁风完成签到 ,获得积分10
2秒前
lily发布了新的文献求助20
3秒前
Danny完成签到,获得积分10
3秒前
1點點cui完成签到,获得积分10
3秒前
3秒前
4秒前
喵呜完成签到,获得积分20
4秒前
XRWei完成签到 ,获得积分10
5秒前
精明的赛凤完成签到 ,获得积分10
5秒前
qin完成签到,获得积分10
5秒前
科研通AI6应助敏敏9813采纳,获得10
5秒前
学术霸王完成签到,获得积分10
5秒前
77完成签到 ,获得积分10
5秒前
Christina完成签到,获得积分10
6秒前
Haki完成签到,获得积分10
6秒前
7秒前
小贾爱喝冰美式完成签到 ,获得积分10
7秒前
Julie完成签到 ,获得积分10
8秒前
zyb完成签到 ,获得积分10
8秒前
Quin完成签到 ,获得积分10
9秒前
dingbeicn完成签到,获得积分10
10秒前
橘子海完成签到 ,获得积分10
11秒前
ZB完成签到,获得积分10
12秒前
小纯完成签到 ,获得积分10
13秒前
虚幻的道天完成签到 ,获得积分10
13秒前
Lucky.完成签到 ,获得积分0
13秒前
Birdy Young发布了新的文献求助10
15秒前
15秒前
姚小楠完成签到 ,获得积分10
16秒前
积极一德完成签到 ,获得积分10
16秒前
cc0514gr完成签到,获得积分10
16秒前
乐乐应助想不到哇采纳,获得10
16秒前
瘦瘦的百褶裙完成签到 ,获得积分10
17秒前
博学多才的小牛完成签到 ,获得积分10
17秒前
19秒前
kalcspin完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493

今日热心研友

沉心静气搞学习
70
差不多先生
2 20
豆子
20
ZJX
1 10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10