亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement

计算机科学 人工智能 卷积神经网络 图像质量 冗余(工程) 残余物 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 算法 图像(数学) 语言学 哲学 操作系统
作者
Minghan Fu,Meiyun Wang,Yaping Wu,Na Zhang,Yongfeng Yang,Haining Wang,Yun Zhou,Yue Shang,Fang‐Xiang Wu,Hairong Zheng,Dong Liang,Zhanli Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2864-2875 被引量:11
标识
DOI:10.1109/jbhi.2023.3260180
摘要

The axial field of view (FOV) is a key factor that affects the quality of PET images. Due to hardware FOV restrictions, conventional short-axis PET scanners with FOVs of 20 to 35 cm can acquire only low-quality PET (LQ-PET) images in fast scanning times (2-3 minutes). To overcome hardware restrictions and improve PET image quality for better clinical diagnoses, several deep learning-based algorithms have been proposed. However, these approaches use simple convolution layers with residual learning and local attention, which insufficiently extract and fuse long-range contextual information. To this end, we propose a novel two-branch network architecture with swin transformer units and graph convolution operation, namely SW-GCN. The proposed SW-GCN provides additional spatial- and channel-wise flexibility to handle different types of input information flow. Specifically, considering the high computational cost of calculating self-attention weights in full-size PET images, in our designed spatial adaptive branch, we take the self-attention mechanism within each local partition window and introduce global information interactions between nonoverlapping windows by shifting operations to prevent the aforementioned problem. In addition, the convolutional network structure considers the information in each channel equally during the feature extraction process. In our designed channel adaptive branch, we use a Watts Strogatz topology structure to connect each feature map to only its most relevant features in each graph convolutional layer, substantially reducing information redundancy. Moreover, ensemble learning is adopted in our SW-GCN for mapping distinct features from the two well-designed branches to the enhanced PET images. We carried out extensive experiments on three single-bed position scans for 386 patients. The test results demonstrate that our proposed SW-GCN approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
23秒前
23秒前
26秒前
29秒前
mumu发布了新的文献求助10
29秒前
36秒前
37秒前
小蘑菇应助王王碎冰冰采纳,获得10
39秒前
爱笑的傲晴完成签到,获得积分10
47秒前
53秒前
搜集达人应助mumu采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
Jasper应助Gavin采纳,获得10
1分钟前
1分钟前
Suttier完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
hahha发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Gavin发布了新的文献求助10
2分钟前
2分钟前
哈哈完成签到 ,获得积分20
2分钟前
Owen应助曦耀采纳,获得10
2分钟前
2分钟前
哈哈关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
2分钟前
hahha完成签到 ,获得积分20
2分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628200
求助须知:如何正确求助?哪些是违规求助? 4716020
关于积分的说明 14963827
捐赠科研通 4785884
什么是DOI,文献DOI怎么找? 2555439
邀请新用户注册赠送积分活动 1516729
关于科研通互助平台的介绍 1477281