亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Two-Branch Neural Network for Short-Axis PET Image Quality Enhancement

计算机科学 人工智能 卷积神经网络 图像质量 冗余(工程) 残余物 特征提取 特征(语言学) 模式识别(心理学) 计算机视觉 算法 图像(数学) 语言学 操作系统 哲学
作者
Minghan Fu,Meiyun Wang,Yaping Wu,Na Zhang,Yang Yongfeng,Meiyun Wang,Yun Zhou,Yue Shang,Fang-Xiang Wu,Hairong Zheng,Liang Dong,Zhanli Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 2864-2875 被引量:2
标识
DOI:10.1109/jbhi.2023.3260180
摘要

The axial field of view (FOV) is a key factor that affects the quality of PET images. Due to hardware FOV restrictions, conventional short-axis PET scanners with FOVs of 20 to 35 cm can acquire only low-quality PET (LQ-PET) images in fast scanning times (2–3 minutes). To overcome hardware restrictions and improve PET image quality for better clinical diagnoses, several deep learning-based algorithms have been proposed. However, these approaches use simple convolution layers with residual learning and local attention, which insufficiently extract and fuse long-range contextual information. To this end, we propose a novel two-branch network architecture with swin transformer units and graph convolution operation, namely SW-GCN. The proposed SW-GCN provides additional spatial- and channel-wise flexibility to handle different types of input information flow. Specifically, considering the high computational cost of calculating self-attention weights in full-size PET images, in our designed spatial adaptive branch, we take the self-attention mechanism within each local partition window and introduce global information interactions between nonoverlapping windows by shifting operations to prevent the aforementioned problem. In addition, the convolutional network structure considers the information in each channel equally during the feature extraction process. In our designed channel adaptive branch, we use a Watts Strogatz topology structure to connect each feature map to only its most relevant features in each graph convolutional layer, substantially reducing information redundancy. Moreover, ensemble learning is adopted in our SW-GCN for mapping distinct features from the two well-designed branches to the enhanced PET images. We carried out extensive experiments on three single-bed position scans for 386 patients. The test results demonstrate that our proposed SW-GCN approach outperforms state-of-the-art methods in both quantitative and qualitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
吃的饭广泛完成签到 ,获得积分10
48秒前
50秒前
大雁完成签到 ,获得积分10
51秒前
优秀的流沙举报千宝求助涉嫌违规
55秒前
111111111发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
xiaozhao123发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
evil发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
美好颜发布了新的文献求助10
3分钟前
GingerF应助十二倍根号二采纳,获得50
4分钟前
美好颜完成签到,获得积分10
4分钟前
GingerF完成签到,获得积分0
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
kw98完成签到 ,获得积分10
5分钟前
田様应助SW采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
SW发布了新的文献求助10
6分钟前
nav完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111256
捐赠科研通 3234136
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264