PKRT-Net: Prior knowledge-based relation transformer network for optic cup and disc segmentation

计算机科学 分割 人工智能 变压器 卷积神经网络 模式识别(心理学) 计算机视觉 电压 工程类 电气工程
作者
Shuai Lu,He Zhao,Hanruo Liu,Huiqi Li,Ningli Wang
出处
期刊:Neurocomputing [Elsevier]
卷期号:538: 126183-126183 被引量:15
标识
DOI:10.1016/j.neucom.2023.03.044
摘要

Glaucoma causes irreversible vision loss, and early detection of glaucoma is essential to protect the vision of patients. The optic cup (OC) and optic disc (OD) are two critical anatomical structures for glaucoma diagnosis. Methods based on convolutional neural networks (CNNs) have been proposed to extract OC and OD, in which OC extraction is very challenging. However, the clinical prior knowledge is not fully utilized in existing CNN methods, which limits the performance of extracting OC and OD. Besides, CNN methods cannot learn long-range semantic information interaction well due to the intrinsic locality of convolution operations. In this paper, we propose a Prior Knowledge-based Relation Transformer Network (PKRT-Net), which employs the clinical prior knowledge to assist OC segmentation and model efficient long-range relation of spatial features by the transformer. PKRT-Net consists of a dual-branch module, a relation transformer fusion module, and a decoder with weighted fusion. Dual-branch module decouples the fundus image into the vessel feature space and general local feature space; the relation transformer fusion module fuses the clinical prior information with local features to obtain more representative features; the weighted fusion module fuses the multi-scale side-outputs from the decoder with the representation of relation transformer module to improve the segmentation performance. We evaluate our proposed PKRT-Net on three public available OC and OD segmentation datasets (i.e., Drishti-GS, RIM-ONE(r3), and REFUGE). The experimental results demonstrate that our proposed PKRT-Net framework achieves state-of-the-art OC and OD segmentation results on these three public datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刀刀完成签到,获得积分10
刚刚
balabala完成签到,获得积分10
刚刚
眼睛大大叔完成签到,获得积分10
1秒前
1秒前
kelaibing完成签到,获得积分10
1秒前
Singularity应助LHL采纳,获得10
1秒前
萧无尽完成签到,获得积分10
2秒前
2秒前
星辰大海应助李理采纳,获得10
2秒前
3秒前
3秒前
飞龙在天完成签到,获得积分0
5秒前
华仔应助腼腆的鸵鸟采纳,获得10
7秒前
珊珊发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
阿连完成签到,获得积分10
9秒前
浅尝离白应助科研通管家采纳,获得30
9秒前
不配.应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
失眠寒梦发布了新的文献求助10
10秒前
11秒前
14秒前
14秒前
yyw发布了新的文献求助100
15秒前
斯文败类应助白华苍松采纳,获得10
16秒前
refidor发布了新的文献求助10
16秒前
Catalysis123发布了新的文献求助10
16秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260