EnDL-HemoLyt: Ensemble Deep Learning-based Tool for Identifying Therapeutic Peptides with Low Hemolytic Activity

深度学习 人工智能 计算机科学 机器学习 计算生物学 生物
作者
Ritesh Kumar Sharma,Sameer Shrivastava,Sanjay Kumar Singh,Abhinav Kumar,Amit Kumar Singh,Sonal Saxena
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2023.3264941
摘要

Low hemolytic therapeutic peptides have gained an edge over small molecule-based medicines. However, finding low hemolytic peptides in laboratory is time-consuming, costly and necessitates the use of mammalian red blood cells. Therefore, wet-lab researchers often perform in-silico prediction to select low hemolytic peptides before proceeding with in-vitro testing. The in-silico tools available for this purpose have following limitations: (i) They do not provide predictions for peptides having N/C terminal modifications. (ii) Data is food for AI; however, datasets used to create existing tools do not contain peptide data generated over past eight years. (iii) Performance of available tools is also low. Therefore, a novel framework has been proposed in current work. Proposed framework utilizes recent dataset and uses ensemble learning technique to combine the decisions produced by bidirectional long short-term memory, bidirectional temporal convolutional network, and 1-dimensional convolutional neural network deep learning algorithms. Deep learning algorithms are capable of extracting features themselves from data. However, instead of relying solely on deep learning-based features (DLF), handcrafted features (HCF) were also provided so that deep learning algorithms can learn features that are missing from HCF, and a better feature vector can be constructed by concatenating HCF and DLF. Additionally, ablation studies were carried out to understand the roles of an ensemble algorithm, HCF, and DLF in the proposed framework. Ablation studies found that the ensemble algorithm, HCF and DLF are crucial components of proposed framework, and there is a decrease in performance on eliminating any of them. Mean value of performance metrics, namely Acc, Sn, Pr, Fs, Sp, Ba, and Mcc obtained by proposed framework for test data is ≈ 87, 85, 86, 86, 88, 87, and 73, respectively. To aid scientific community, model developed from proposed framework has been deployed as a web server at https://endl-hemolyt.anvil.app/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎龙猫发布了新的文献求助10
1秒前
深情安青应助chloe采纳,获得10
1秒前
Atopos文完成签到,获得积分10
3秒前
崔风机应助haifang采纳,获得10
3秒前
诚心凝蝶完成签到,获得积分10
5秒前
5秒前
wanci应助暖暖采纳,获得10
6秒前
6秒前
hao关闭了hao文献求助
6秒前
司徒开山完成签到,获得积分10
7秒前
mary完成签到,获得积分10
7秒前
紫哈登完成签到,获得积分10
7秒前
gmjinfeng完成签到,获得积分0
7秒前
刘坦苇发布了新的文献求助10
8秒前
9秒前
崔风机应助勤劳的代容采纳,获得10
9秒前
jxzhou完成签到,获得积分10
10秒前
研友_VZG7GZ应助ihuhiu采纳,获得10
11秒前
jxzhou发布了新的文献求助10
13秒前
刘坦苇发布了新的文献求助10
13秒前
Wo了喝完成签到,获得积分10
13秒前
干净的白曼完成签到 ,获得积分10
13秒前
14秒前
谨慎龙猫完成签到,获得积分20
15秒前
在水一方应助123采纳,获得10
16秒前
123456789hyb完成签到,获得积分10
16秒前
酷酷冷亦完成签到,获得积分10
16秒前
小二郎应助LYDZ2采纳,获得10
16秒前
勤劳的代容完成签到,获得积分20
17秒前
丘比特应助刘燕采纳,获得10
18秒前
18秒前
18秒前
20秒前
leotao完成签到,获得积分10
21秒前
研友Bn完成签到 ,获得积分10
21秒前
22秒前
wbh完成签到,获得积分10
22秒前
22秒前
刘坦苇发布了新的文献求助10
23秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459450
求助须知:如何正确求助?哪些是违规求助? 3053885
关于积分的说明 9039213
捐赠科研通 2743260
什么是DOI,文献DOI怎么找? 1504731
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694677