Quantitative assessment and mitigation strategies of greenhouse gas emissions from rice fields in China: A data-driven approach based on machine learning and statistical modeling

温室气体 环境科学 肥料 水田 灌溉 排水 环境工程 耕作 稻草 农业工程 农学 工程类 生态学 生物
作者
Qingguan Wu,Jingzhi Wang,Yong He,Ying Liu,Qian Jiang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:210: 107929-107929 被引量:4
标识
DOI:10.1016/j.compag.2023.107929
摘要

The accurate prediction of greenhouse gas (GHG) emissions from paddy fields is critical for developing mitigation strategies to reduce emissions, while realizing the large-scale prediction of GHG emissions from paddy fields remains to be a challenge. Here, we established machine learning models to predict the GHG emissions from Chinese paddy systems using a dataset including 782 CH4 and 679 N2O emission observations based on 118 published studies across China. Our results identified XGBoost was the most suitable model with the outstanding efficiency and accuracy for predicting both CH4 (R2 = 0.754, RMSE = 0.485 kg ha−1) and N2O emissions (R2 = 0.762, RMSE = 0.423 kg ha−1) from rice fields in China. We found mineral and organic fertilizer rate, irrigation mode, straw returned proportion and tillage depth were key factors in regulating GHG emissions. Specifically, CH4 emissions trended to increase first and then decrease with increasing mineral nitrogen fertilizer rate, with the inflection point delayed under the application of organic fertilizer. On the other hand, N2O emissions continued to increase until the N fertilizer rate reached approximately 150 kg ha−1. The use of organic fertilizer, tillage, straw return in half and full quantity increased global warming potential (GWP) by 80.3 %, 33.8 %, 25.2 % and 111.6 %, respectively. Frequent drainage (FD) was identified as the most promising water management mode, with a higher potential for GHG emission mitigation of 39.5 % compared to continuous flooding, followed by mid-season drainage at 18.4 %. We found the combination of a mineral nitrogen fertilizer rate of 128 kg ha−1, FD water management, without straw, tillage, and organic fertilizer could achieve the most effective GHG emission mitigation, with a GWP of 3.13 Mg CO2 equivalent ha−1. Our findings provided a new insight for predicting GHG emissions from rice fields on a large scale, and offered guidance for mitigating GHG emissions from rice production in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好啊发布了新的文献求助10
1秒前
师傅被妖怪抓走了完成签到,获得积分10
2秒前
2秒前
慕青应助自然的依风采纳,获得30
2秒前
2秒前
王崽完成签到,获得积分10
2秒前
五斤老陈醋完成签到,获得积分10
2秒前
3秒前
3秒前
asd发布了新的文献求助10
5秒前
小牙医发布了新的文献求助10
7秒前
beiu发布了新的文献求助10
7秒前
9秒前
9秒前
戈笙gg发布了新的文献求助10
9秒前
彭于晏应助asd采纳,获得10
12秒前
Lucas应助ryt采纳,获得10
12秒前
快乐人杰完成签到,获得积分10
13秒前
17应助wyy采纳,获得10
14秒前
薰硝壤应助wyy采纳,获得10
14秒前
14秒前
15秒前
俊逸书琴发布了新的文献求助10
16秒前
16秒前
萧羊青完成签到,获得积分10
18秒前
18秒前
YEFEIeee完成签到 ,获得积分10
19秒前
canvasss完成签到 ,获得积分10
19秒前
戈笙gg完成签到,获得积分10
19秒前
Yuriko完成签到,获得积分10
22秒前
uki完成签到,获得积分10
22秒前
marco完成签到 ,获得积分10
23秒前
ryt发布了新的文献求助10
24秒前
萧布完成签到,获得积分10
24秒前
善学以致用应助lyx1997采纳,获得10
24秒前
Tang完成签到,获得积分10
25秒前
Jasper应助力口氵由采纳,获得10
26秒前
27秒前
uki发布了新的文献求助10
29秒前
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152043
求助须知:如何正确求助?哪些是违规求助? 2803339
关于积分的说明 7853343
捐赠科研通 2460804
什么是DOI,文献DOI怎么找? 1310058
科研通“疑难数据库(出版商)”最低求助积分说明 629097
版权声明 601765