Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification

药效团 虚拟筛选 对接(动物) 计算生物学 Janus激酶3 计算机科学 药物发现 仿形(计算机编程) 分子动力学 机器学习 化学 人工智能 生物信息学 生物 立体化学 计算化学 生物化学 医学 操作系统 细胞毒性T细胞 护理部 抗原提呈细胞 体外
作者
Jingyu Zhu,Jingyu Sun,Lei Jia,Lei Xu,Yanfei Cai,Yun Chen,Jian Jin
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:6 (7) 被引量:2
标识
DOI:10.1002/adts.202200835
摘要

Abstract Extensive research has accumulated suggesting that Janus kinase 3 (JAK3) is closely related to the occurrence and development of various human diseases, making JAK3 a highly potential drug target. However, JAK3 has high homology with other members of the JAK family, making the development of JAK3 inhibitors full of challenges. Thus, here, a naïve Bayesian classification (NBC) model based on multiple JAK3 protein conformations, which integrates molecular docking, pharmacophore, and molecular descriptors, is developed to find novel JAK3 inhibitors. First, the validation set is used to prove whether molecular docking or pharmacophore, integrating multiple JAK3 conformations always has higher prediction accuracy than that of any single conformation. Second, external prediction reveals that the NBC model combining molecular docking, pharmacophore, and important molecular features could significantly improve the enrichment of active JAK3 inhibitors. Finally, the optimal NBC model is utilized for virtual screening against a large chemical database and some compounds with high Bayesian scores are identified. Altogether, the machine learning‐based virtual screening protocol not only has strong efficiency but also has high screening accuracy. It is hoped that the developed virtual screening strategy could provide valuable guidance for the discovery of novel JAK3 inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
2秒前
可爱绮发布了新的文献求助10
5秒前
hj发布了新的文献求助10
5秒前
8秒前
华仔应助幸运鹅采纳,获得10
11秒前
幽默依凝完成签到,获得积分10
11秒前
12秒前
12秒前
小马甲应助可爱绮采纳,获得10
12秒前
Prejudice3发布了新的文献求助10
15秒前
SciGPT应助ZHI采纳,获得10
18秒前
青山完成签到 ,获得积分10
19秒前
金黎发布了新的文献求助10
19秒前
欢呼靳完成签到 ,获得积分10
19秒前
机智的灵萱完成签到,获得积分10
19秒前
君衡完成签到 ,获得积分10
22秒前
微暖完成签到,获得积分0
26秒前
Xjx6519发布了新的文献求助10
27秒前
墨染完成签到,获得积分10
29秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523