Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification

药效团 虚拟筛选 对接(动物) 计算生物学 Janus激酶3 计算机科学 药物发现 仿形(计算机编程) 分子动力学 机器学习 化学 人工智能 生物信息学 生物 立体化学 计算化学 生物化学 医学 操作系统 细胞毒性T细胞 护理部 抗原提呈细胞 体外
作者
Jingyu Zhu,Jingyu Sun,Lei Jia,Lei Xu,Yanfei Cai,Yun Chen,Jian Jin
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:6 (7) 被引量:2
标识
DOI:10.1002/adts.202200835
摘要

Abstract Extensive research has accumulated suggesting that Janus kinase 3 (JAK3) is closely related to the occurrence and development of various human diseases, making JAK3 a highly potential drug target. However, JAK3 has high homology with other members of the JAK family, making the development of JAK3 inhibitors full of challenges. Thus, here, a naïve Bayesian classification (NBC) model based on multiple JAK3 protein conformations, which integrates molecular docking, pharmacophore, and molecular descriptors, is developed to find novel JAK3 inhibitors. First, the validation set is used to prove whether molecular docking or pharmacophore, integrating multiple JAK3 conformations always has higher prediction accuracy than that of any single conformation. Second, external prediction reveals that the NBC model combining molecular docking, pharmacophore, and important molecular features could significantly improve the enrichment of active JAK3 inhibitors. Finally, the optimal NBC model is utilized for virtual screening against a large chemical database and some compounds with high Bayesian scores are identified. Altogether, the machine learning‐based virtual screening protocol not only has strong efficiency but also has high screening accuracy. It is hoped that the developed virtual screening strategy could provide valuable guidance for the discovery of novel JAK3 inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助海绵宝宝采纳,获得20
刚刚
2秒前
2秒前
美猴王完成签到 ,获得积分0
2秒前
花笙完成签到,获得积分10
3秒前
3秒前
CodeCraft应助走四方采纳,获得10
4秒前
赘婿应助mmqq采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
王敏发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
星星发布了新的文献求助10
6秒前
6秒前
wangzhiqin发布了新的文献求助10
6秒前
7秒前
7秒前
徐徐图之发布了新的文献求助10
7秒前
科研通AI6应助RR采纳,获得10
7秒前
范占豪完成签到,获得积分10
8秒前
王路飞发布了新的文献求助10
8秒前
lsktoast发布了新的文献求助10
10秒前
森巴小妹发布了新的文献求助10
10秒前
牛马的人发布了新的文献求助10
11秒前
深情绿柳发布了新的文献求助10
11秒前
11秒前
11秒前
张哈哈发布了新的文献求助20
12秒前
情怀应助林琳采纳,获得10
13秒前
仙啾啾发布了新的文献求助10
14秒前
背后的静柏完成签到,获得积分20
16秒前
哈哈哈完成签到,获得积分10
16秒前
深情安青应助可爱千兰采纳,获得10
16秒前
17秒前
ding应助ZJR采纳,获得10
17秒前
chenchen完成签到,获得积分10
17秒前
17秒前
18秒前
滴滴滴完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548412
求助须知:如何正确求助?哪些是违规求助? 4633745
关于积分的说明 14632589
捐赠科研通 4575424
什么是DOI,文献DOI怎么找? 2508974
邀请新用户注册赠送积分活动 1485169
关于科研通互助平台的介绍 1456179