Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification

药效团 虚拟筛选 对接(动物) 计算生物学 Janus激酶3 计算机科学 药物发现 仿形(计算机编程) 分子动力学 机器学习 化学 人工智能 生物信息学 生物 立体化学 计算化学 生物化学 医学 操作系统 细胞毒性T细胞 护理部 抗原提呈细胞 体外
作者
Jingyu Zhu,Jingyu Sun,Lei Jia,Lei Xu,Yanfei Cai,Yun Chen,Jian Jin
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:6 (7) 被引量:2
标识
DOI:10.1002/adts.202200835
摘要

Abstract Extensive research has accumulated suggesting that Janus kinase 3 (JAK3) is closely related to the occurrence and development of various human diseases, making JAK3 a highly potential drug target. However, JAK3 has high homology with other members of the JAK family, making the development of JAK3 inhibitors full of challenges. Thus, here, a naïve Bayesian classification (NBC) model based on multiple JAK3 protein conformations, which integrates molecular docking, pharmacophore, and molecular descriptors, is developed to find novel JAK3 inhibitors. First, the validation set is used to prove whether molecular docking or pharmacophore, integrating multiple JAK3 conformations always has higher prediction accuracy than that of any single conformation. Second, external prediction reveals that the NBC model combining molecular docking, pharmacophore, and important molecular features could significantly improve the enrichment of active JAK3 inhibitors. Finally, the optimal NBC model is utilized for virtual screening against a large chemical database and some compounds with high Bayesian scores are identified. Altogether, the machine learning‐based virtual screening protocol not only has strong efficiency but also has high screening accuracy. It is hoped that the developed virtual screening strategy could provide valuable guidance for the discovery of novel JAK3 inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
刚刚
yyyg发布了新的文献求助50
刚刚
手可摘星辰完成签到,获得积分10
刚刚
小蘑菇应助悲凉的新筠采纳,获得10
1秒前
woxbin发布了新的文献求助10
1秒前
聂志鹏发布了新的文献求助10
2秒前
小二郎应助大气的砖家采纳,获得10
2秒前
闫辰龙发布了新的文献求助10
2秒前
2秒前
3秒前
小石头完成签到,获得积分10
3秒前
jgjghjghj完成签到,获得积分10
4秒前
Hello应助繁荣的念双采纳,获得10
5秒前
情怀应助auguscai采纳,获得10
6秒前
yyyg完成签到,获得积分10
6秒前
清衍发布了新的文献求助10
7秒前
8秒前
10秒前
丘比特应助山东及时雨采纳,获得10
10秒前
无名草0502完成签到 ,获得积分10
10秒前
孙小雨完成签到,获得积分10
10秒前
天天快乐应助weddcf采纳,获得10
10秒前
11秒前
浮游应助小于采纳,获得10
12秒前
BowieHuang应助小于采纳,获得10
12秒前
jason发布了新的文献求助10
12秒前
applecat147完成签到,获得积分10
13秒前
momo完成签到,获得积分10
13秒前
13秒前
欣慰傲薇发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
秀丽小猫咪举报wky求助涉嫌违规
14秒前
李健的小迷弟应助闫辰龙采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098