Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification

药效团 虚拟筛选 对接(动物) 计算生物学 Janus激酶3 计算机科学 药物发现 仿形(计算机编程) 分子动力学 机器学习 化学 人工智能 生物信息学 生物 立体化学 计算化学 生物化学 医学 操作系统 细胞毒性T细胞 护理部 抗原提呈细胞 体外
作者
Jingyu Zhu,Jingyu Sun,Lei Jia,Lei Xu,Yanfei Cai,Yun Chen,Jian Jin
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:6 (7) 被引量:2
标识
DOI:10.1002/adts.202200835
摘要

Abstract Extensive research has accumulated suggesting that Janus kinase 3 (JAK3) is closely related to the occurrence and development of various human diseases, making JAK3 a highly potential drug target. However, JAK3 has high homology with other members of the JAK family, making the development of JAK3 inhibitors full of challenges. Thus, here, a naïve Bayesian classification (NBC) model based on multiple JAK3 protein conformations, which integrates molecular docking, pharmacophore, and molecular descriptors, is developed to find novel JAK3 inhibitors. First, the validation set is used to prove whether molecular docking or pharmacophore, integrating multiple JAK3 conformations always has higher prediction accuracy than that of any single conformation. Second, external prediction reveals that the NBC model combining molecular docking, pharmacophore, and important molecular features could significantly improve the enrichment of active JAK3 inhibitors. Finally, the optimal NBC model is utilized for virtual screening against a large chemical database and some compounds with high Bayesian scores are identified. Altogether, the machine learning‐based virtual screening protocol not only has strong efficiency but also has high screening accuracy. It is hoped that the developed virtual screening strategy could provide valuable guidance for the discovery of novel JAK3 inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助luokm采纳,获得10
1秒前
在水一方应助英俊柜子采纳,获得10
2秒前
3秒前
祝yu完成签到 ,获得积分10
3秒前
moumou完成签到,获得积分10
4秒前
英俊的铭应助CATH采纳,获得10
6秒前
6秒前
舒心傲易完成签到,获得积分10
7秒前
慕青应助蓝天采纳,获得10
7秒前
8秒前
斯文败类应助杜小杜采纳,获得10
8秒前
wangpinyl发布了新的文献求助10
9秒前
9秒前
KasenDen发布了新的文献求助10
9秒前
柚子苏发布了新的文献求助10
9秒前
totalMiss完成签到,获得积分10
10秒前
我是老大应助YY采纳,获得10
10秒前
LmY大帅比发布了新的文献求助10
11秒前
11秒前
abby发布了新的文献求助10
12秒前
ding应助PURPLE采纳,获得30
12秒前
gyq发布了新的文献求助10
13秒前
只争朝夕应助Zhang采纳,获得10
14秒前
明亮的小蘑菇完成签到 ,获得积分10
15秒前
15秒前
唐唐发布了新的文献求助10
15秒前
函数完成签到 ,获得积分10
17秒前
wangpinyl完成签到,获得积分10
17秒前
17秒前
科研通AI6应助yyanxuemin919采纳,获得10
17秒前
大菊完成签到,获得积分10
18秒前
蓝天发布了新的文献求助10
19秒前
abby完成签到,获得积分10
20秒前
Stroeve发布了新的文献求助10
20秒前
LmY大帅比完成签到,获得积分10
20秒前
龙虾花甲发布了新的文献求助10
20秒前
20秒前
21秒前
yangyang发布了新的文献求助30
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563294
求助须知:如何正确求助?哪些是违规求助? 4648146
关于积分的说明 14683749
捐赠科研通 4590165
什么是DOI,文献DOI怎么找? 2518308
邀请新用户注册赠送积分活动 1491038
关于科研通互助平台的介绍 1462325