Machine Learning‐Enabled Virtual Screening with Multiple Protein Structures toward the Discovery of Novel JAK3 Inhibitors: Integration of Molecular Docking, Pharmacophore, and Naïve Bayesian Classification

药效团 虚拟筛选 对接(动物) 计算生物学 Janus激酶3 计算机科学 药物发现 仿形(计算机编程) 分子动力学 机器学习 化学 人工智能 生物信息学 生物 立体化学 计算化学 生物化学 医学 操作系统 细胞毒性T细胞 护理部 抗原提呈细胞 体外
作者
Jingyu Zhu,Jingyu Sun,Lei Jia,Lei Xu,Yanfei Cai,Yun Chen,Jian Jin
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:6 (7) 被引量:2
标识
DOI:10.1002/adts.202200835
摘要

Abstract Extensive research has accumulated suggesting that Janus kinase 3 (JAK3) is closely related to the occurrence and development of various human diseases, making JAK3 a highly potential drug target. However, JAK3 has high homology with other members of the JAK family, making the development of JAK3 inhibitors full of challenges. Thus, here, a naïve Bayesian classification (NBC) model based on multiple JAK3 protein conformations, which integrates molecular docking, pharmacophore, and molecular descriptors, is developed to find novel JAK3 inhibitors. First, the validation set is used to prove whether molecular docking or pharmacophore, integrating multiple JAK3 conformations always has higher prediction accuracy than that of any single conformation. Second, external prediction reveals that the NBC model combining molecular docking, pharmacophore, and important molecular features could significantly improve the enrichment of active JAK3 inhibitors. Finally, the optimal NBC model is utilized for virtual screening against a large chemical database and some compounds with high Bayesian scores are identified. Altogether, the machine learning‐based virtual screening protocol not only has strong efficiency but also has high screening accuracy. It is hoped that the developed virtual screening strategy could provide valuable guidance for the discovery of novel JAK3 inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牟若溪完成签到,获得积分10
刚刚
LiShin完成签到,获得积分10
1秒前
Air完成签到,获得积分10
1秒前
怎么会这样呢完成签到,获得积分10
1秒前
夏沫完成签到,获得积分10
1秒前
疯子不风完成签到,获得积分10
1秒前
Daisy完成签到,获得积分10
1秒前
星星完成签到,获得积分10
1秒前
专一的猎豹完成签到,获得积分10
2秒前
高贵云朵发布了新的文献求助10
2秒前
瑾瑜完成签到,获得积分20
2秒前
PDIF-CN2发布了新的文献求助10
2秒前
稳重的藏鸟完成签到,获得积分10
3秒前
甘愿完成签到,获得积分10
3秒前
CTT完成签到,获得积分10
4秒前
YWG完成签到,获得积分10
4秒前
微笑面包完成签到,获得积分10
4秒前
gzsy完成签到,获得积分10
4秒前
pasxc完成签到 ,获得积分10
4秒前
FashionBoy应助不倦采纳,获得10
4秒前
5秒前
达雨发布了新的文献求助10
5秒前
6秒前
烟花应助学术大辣鸡采纳,获得10
6秒前
蒲公英完成签到,获得积分10
6秒前
司空绝山完成签到,获得积分10
6秒前
瑾瑜发布了新的文献求助10
7秒前
顾矜应助劣根采纳,获得10
7秒前
Ihang完成签到,获得积分10
7秒前
gy完成签到,获得积分10
8秒前
yfn完成签到,获得积分10
8秒前
wills完成签到,获得积分10
8秒前
llllll完成签到,获得积分10
8秒前
唠叨的夏烟完成签到 ,获得积分10
9秒前
果果完成签到,获得积分10
11秒前
11秒前
寻靖完成签到,获得积分10
11秒前
12秒前
chenyou完成签到,获得积分10
12秒前
小苹果完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568425
求助须知:如何正确求助?哪些是违规求助? 4653025
关于积分的说明 14703215
捐赠科研通 4594849
什么是DOI,文献DOI怎么找? 2521311
邀请新用户注册赠送积分活动 1492962
关于科研通互助平台的介绍 1463778