The optimal method for water quality parameters retrieval of urban river based on machine learning algorithms using remote sensing images

计算机科学 质量(理念) 算法 遥感 水质 人工智能 机器学习 数据挖掘 地质学 生态学 哲学 生物 认识论
作者
Yizhu Jiang,Jinling Kong,Yanling Zhong,Jingya Zhang,Zijia Zheng,Lizheng Wang,Dingming Liu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7297-7317 被引量:5
标识
DOI:10.1080/01431161.2023.2209918
摘要

Water eutrophication has become one of the prominent problems of environmental protection in inland watersheds. Turbidity, total phosphorus (TP) and total nitrogen (TN) concentrations are key water quality parameters (WQPs) that reflect the level of water eutrophication in inland waters. Due to the complex interaction effects between different water quality in urban rivers, the water quality retrieval models still have the problem of single input features and poor applicability. This paper proposed a robust feature selection method based on machine learning and utilized Sentinel-2 remote sensing images for water quality retrieval of Chan and Ba rivers in Xi'an City. The ReliefF and global sensitivity analysis (GSA) methods (ReliefF-GSA) were used to select the optimal feature combination from the potential feature dataset. Based on the optimal feature combination, Random Forest regression (RFR), LightGBM and XGboost models were constructed for the three WQPs retrieval, respectively. The optimal models were then used to invert the three WQPs and the spatial-temporal variation of WQPs from January 2021 to January 2022 was analysed. The results show that (1) The RelieF-GSA method is suitable for high-dimensional feature filtration and enables optimal feature selection for specific WQPs retrieval. It is revealed that the BOI index (black odour water index) is the key feature for the retrieval of turbidity and TN concentration. (2) The RFR model was found to be better than other models and more appropriate for Chan and Ba rivers, with coefficients of determination (R2) of 0.90, 0.89 and 0.81, respectively. (3) It was found that the water qualities in the Chan and Ba rivers have prominent seasonal characteristics. Turbidity and TP concentrations showed higher, while TN concentration showed relatively low in autumn. The method and conclusions of this paper can further provide a reference for WPQs retrieval in urban rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芳芳子呀完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
华仔应助000采纳,获得10
2秒前
慕青应助鲤鱼晟睿采纳,获得10
4秒前
核桃发布了新的文献求助10
4秒前
冬夜发布了新的文献求助10
5秒前
15987完成签到,获得积分10
5秒前
thl发布了新的文献求助10
5秒前
lvying发布了新的文献求助10
6秒前
李尧完成签到 ,获得积分20
7秒前
ER发布了新的文献求助20
8秒前
ns发布了新的文献求助10
8秒前
打打应助默默善愁采纳,获得10
8秒前
9秒前
11秒前
11秒前
austing完成签到,获得积分10
14秒前
14秒前
王哪跑12完成签到,获得积分10
14秒前
14秒前
The_ye发布了新的文献求助10
15秒前
阿托品阿发布了新的文献求助10
15秒前
尼大王完成签到,获得积分10
16秒前
李尧关注了科研通微信公众号
18秒前
18秒前
feiyu完成签到,获得积分10
18秒前
糊涂的康发布了新的文献求助10
19秒前
19秒前
20秒前
鲤鱼晟睿发布了新的文献求助10
20秒前
20秒前
fcc完成签到 ,获得积分10
21秒前
21秒前
SciGPT应助摸鱼人采纳,获得20
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434330
求助须知:如何正确求助?哪些是违规求助? 4546609
关于积分的说明 14203388
捐赠科研通 4466564
什么是DOI,文献DOI怎么找? 2448190
邀请新用户注册赠送积分活动 1439046
关于科研通互助平台的介绍 1415945