The optimal method for water quality parameters retrieval of urban river based on machine learning algorithms using remote sensing images

计算机科学 质量(理念) 算法 遥感 水质 人工智能 机器学习 数据挖掘 地质学 生态学 哲学 生物 认识论
作者
Yizhu Jiang,Jinling Kong,Yanling Zhong,Jingya Zhang,Zijia Zheng,Lizheng Wang,Dingming Liu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (19-20): 7297-7317 被引量:5
标识
DOI:10.1080/01431161.2023.2209918
摘要

Water eutrophication has become one of the prominent problems of environmental protection in inland watersheds. Turbidity, total phosphorus (TP) and total nitrogen (TN) concentrations are key water quality parameters (WQPs) that reflect the level of water eutrophication in inland waters. Due to the complex interaction effects between different water quality in urban rivers, the water quality retrieval models still have the problem of single input features and poor applicability. This paper proposed a robust feature selection method based on machine learning and utilized Sentinel-2 remote sensing images for water quality retrieval of Chan and Ba rivers in Xi'an City. The ReliefF and global sensitivity analysis (GSA) methods (ReliefF-GSA) were used to select the optimal feature combination from the potential feature dataset. Based on the optimal feature combination, Random Forest regression (RFR), LightGBM and XGboost models were constructed for the three WQPs retrieval, respectively. The optimal models were then used to invert the three WQPs and the spatial-temporal variation of WQPs from January 2021 to January 2022 was analysed. The results show that (1) The RelieF-GSA method is suitable for high-dimensional feature filtration and enables optimal feature selection for specific WQPs retrieval. It is revealed that the BOI index (black odour water index) is the key feature for the retrieval of turbidity and TN concentration. (2) The RFR model was found to be better than other models and more appropriate for Chan and Ba rivers, with coefficients of determination (R2) of 0.90, 0.89 and 0.81, respectively. (3) It was found that the water qualities in the Chan and Ba rivers have prominent seasonal characteristics. Turbidity and TP concentrations showed higher, while TN concentration showed relatively low in autumn. The method and conclusions of this paper can further provide a reference for WPQs retrieval in urban rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
realmar完成签到,获得积分10
1秒前
打打应助vivianzzz采纳,获得10
1秒前
得咎完成签到 ,获得积分10
2秒前
Garrett完成签到 ,获得积分10
2秒前
屋子完成签到,获得积分10
2秒前
Z6745发布了新的文献求助10
2秒前
2秒前
3秒前
凭栏听雨完成签到,获得积分10
3秒前
争气完成签到,获得积分10
3秒前
研友_VZG7GZ应助Dlwlrma采纳,获得10
3秒前
啊哦完成签到 ,获得积分10
4秒前
kk发布了新的文献求助10
4秒前
玖玖完成签到,获得积分10
4秒前
橙100完成签到,获得积分10
4秒前
汉堡包应助Mytheye采纳,获得10
5秒前
传奇3应助年华采纳,获得10
5秒前
神勇夏寒完成签到,获得积分10
5秒前
CipherSage应助gt采纳,获得10
5秒前
jojo144发布了新的文献求助10
6秒前
6秒前
家若完成签到 ,获得积分10
6秒前
6秒前
燕燕完成签到 ,获得积分10
7秒前
大个应助青阳采纳,获得10
7秒前
7秒前
科研通AI2S应助aoxianghuang采纳,获得10
7秒前
pterionGao完成签到 ,获得积分10
7秒前
mljever完成签到,获得积分10
8秒前
Jennifer应助哈哈李采纳,获得10
8秒前
8秒前
淡然柚子发布了新的文献求助10
8秒前
8秒前
8秒前
浮游应助Wangle采纳,获得10
8秒前
郭不气发布了新的文献求助10
8秒前
许丛郁发布了新的文献求助10
8秒前
ZDM完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644