The optimal method for water quality parameters retrieval of urban river based on machine learning algorithms using remote sensing images

计算机科学 质量(理念) 算法 遥感 水质 人工智能 机器学习 数据挖掘 地质学 生态学 生物 认识论 哲学
作者
Yizhu Jiang,Jinling Kong,Yanling Zhong,Jingya Zhang,Zijia Zheng,Lizheng Wang,Dingming Liu
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (19-20): 7297-7317 被引量:5
标识
DOI:10.1080/01431161.2023.2209918
摘要

Water eutrophication has become one of the prominent problems of environmental protection in inland watersheds. Turbidity, total phosphorus (TP) and total nitrogen (TN) concentrations are key water quality parameters (WQPs) that reflect the level of water eutrophication in inland waters. Due to the complex interaction effects between different water quality in urban rivers, the water quality retrieval models still have the problem of single input features and poor applicability. This paper proposed a robust feature selection method based on machine learning and utilized Sentinel-2 remote sensing images for water quality retrieval of Chan and Ba rivers in Xi'an City. The ReliefF and global sensitivity analysis (GSA) methods (ReliefF-GSA) were used to select the optimal feature combination from the potential feature dataset. Based on the optimal feature combination, Random Forest regression (RFR), LightGBM and XGboost models were constructed for the three WQPs retrieval, respectively. The optimal models were then used to invert the three WQPs and the spatial-temporal variation of WQPs from January 2021 to January 2022 was analysed. The results show that (1) The RelieF-GSA method is suitable for high-dimensional feature filtration and enables optimal feature selection for specific WQPs retrieval. It is revealed that the BOI index (black odour water index) is the key feature for the retrieval of turbidity and TN concentration. (2) The RFR model was found to be better than other models and more appropriate for Chan and Ba rivers, with coefficients of determination (R2) of 0.90, 0.89 and 0.81, respectively. (3) It was found that the water qualities in the Chan and Ba rivers have prominent seasonal characteristics. Turbidity and TP concentrations showed higher, while TN concentration showed relatively low in autumn. The method and conclusions of this paper can further provide a reference for WPQs retrieval in urban rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橘子味棒冰完成签到,获得积分10
刚刚
天天快乐应助薛言采纳,获得10
刚刚
1秒前
1秒前
1秒前
77发布了新的文献求助10
1秒前
浅暖发布了新的文献求助20
1秒前
Solar energy发布了新的文献求助10
2秒前
Grace0621发布了新的文献求助10
2秒前
英勇的翠霜完成签到,获得积分20
2秒前
完美世界应助称心的乘云采纳,获得10
3秒前
牛姐完成签到,获得积分10
3秒前
LYN完成签到,获得积分10
5秒前
面包发布了新的文献求助10
5秒前
彭于晏应助秋天的童话采纳,获得10
5秒前
李健的小迷弟应助GGGG采纳,获得10
5秒前
5秒前
5秒前
5秒前
小白发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
JamesPei应助奔流的河采纳,获得10
8秒前
8秒前
8秒前
9秒前
娃哈哈完成签到 ,获得积分20
9秒前
共享精神应助茗姜采纳,获得10
9秒前
xinluli完成签到,获得积分10
9秒前
9秒前
fang发布了新的文献求助10
9秒前
10秒前
Iris发布了新的文献求助10
10秒前
11秒前
乐乐应助科研小白菜采纳,获得10
12秒前
辛辛点灯完成签到 ,获得积分10
12秒前
知风完成签到,获得积分10
12秒前
溆玉碎兰笑完成签到 ,获得积分10
12秒前
白桃枝完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074