已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The optimal method for water quality parameters retrieval of urban river based on machine learning algorithms using remote sensing images

计算机科学 质量(理念) 算法 遥感 水质 人工智能 机器学习 数据挖掘 地质学 生态学 哲学 生物 认识论
作者
Yizhu Jiang,Jinling Kong,Yanling Zhong,Jingya Zhang,Zijia Zheng,Lizheng Wang,Dingming Liu
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (19-20): 7297-7317 被引量:5
标识
DOI:10.1080/01431161.2023.2209918
摘要

Water eutrophication has become one of the prominent problems of environmental protection in inland watersheds. Turbidity, total phosphorus (TP) and total nitrogen (TN) concentrations are key water quality parameters (WQPs) that reflect the level of water eutrophication in inland waters. Due to the complex interaction effects between different water quality in urban rivers, the water quality retrieval models still have the problem of single input features and poor applicability. This paper proposed a robust feature selection method based on machine learning and utilized Sentinel-2 remote sensing images for water quality retrieval of Chan and Ba rivers in Xi'an City. The ReliefF and global sensitivity analysis (GSA) methods (ReliefF-GSA) were used to select the optimal feature combination from the potential feature dataset. Based on the optimal feature combination, Random Forest regression (RFR), LightGBM and XGboost models were constructed for the three WQPs retrieval, respectively. The optimal models were then used to invert the three WQPs and the spatial-temporal variation of WQPs from January 2021 to January 2022 was analysed. The results show that (1) The RelieF-GSA method is suitable for high-dimensional feature filtration and enables optimal feature selection for specific WQPs retrieval. It is revealed that the BOI index (black odour water index) is the key feature for the retrieval of turbidity and TN concentration. (2) The RFR model was found to be better than other models and more appropriate for Chan and Ba rivers, with coefficients of determination (R2) of 0.90, 0.89 and 0.81, respectively. (3) It was found that the water qualities in the Chan and Ba rivers have prominent seasonal characteristics. Turbidity and TP concentrations showed higher, while TN concentration showed relatively low in autumn. The method and conclusions of this paper can further provide a reference for WPQs retrieval in urban rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
最棒哒完成签到 ,获得积分10
2秒前
小人物的坚持完成签到 ,获得积分10
3秒前
ZJX完成签到,获得积分10
4秒前
科研通AI6应助晚风采纳,获得10
4秒前
可爱安白完成签到,获得积分10
6秒前
Wuyx完成签到 ,获得积分10
6秒前
qin发布了新的文献求助10
6秒前
庚朝年完成签到 ,获得积分10
7秒前
Chen完成签到 ,获得积分10
7秒前
阿狸贱贱完成签到,获得积分10
8秒前
孙毅航完成签到 ,获得积分10
8秒前
孔孔孔完成签到 ,获得积分10
9秒前
vippp完成签到 ,获得积分10
9秒前
NiceSunnyDay完成签到 ,获得积分10
9秒前
自由橘子完成签到 ,获得积分10
10秒前
Yian完成签到,获得积分10
10秒前
倪妮完成签到,获得积分10
11秒前
12秒前
12秒前
激动的跳跳糖完成签到 ,获得积分10
12秒前
认真的寒香完成签到,获得积分10
12秒前
13秒前
君莫笑完成签到 ,获得积分10
13秒前
dadabad完成签到 ,获得积分10
13秒前
哭泣忆文完成签到,获得积分10
14秒前
祁风完成签到 ,获得积分10
14秒前
lily发布了新的文献求助20
15秒前
Danny完成签到,获得积分10
15秒前
1點點cui完成签到,获得积分10
15秒前
15秒前
16秒前
喵呜完成签到,获得积分20
16秒前
XRWei完成签到 ,获得积分10
17秒前
精明的赛凤完成签到 ,获得积分10
17秒前
qin完成签到,获得积分10
17秒前
科研通AI6应助敏敏9813采纳,获得10
17秒前
学术霸王完成签到,获得积分10
17秒前
77完成签到 ,获得积分10
17秒前
Christina完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493

今日热心研友

沉心静气搞学习
70
差不多先生
2 20
Li
3
豆子
20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10