A super-resolution-based license plate recognition method for remote surveillance

许可证 计算机科学 人工智能 深度学习 低分辨率 模式识别(心理学) 计算机视觉 编码(集合论) 人工神经网络 高分辨率 遥感 操作系统 地质学 集合(抽象数据类型) 程序设计语言
作者
Sen Pan,Si-Bao Chen,Bin Luo
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:94: 103844-103844
标识
DOI:10.1016/j.jvcir.2023.103844
摘要

With the continuous development of deep learning, neural networks have made great progress in license plate recognition (LPR). Nevertheless, there is still room to improve the performance of license plate recognition for low-resolution and relatively blurry images in remote surveillance scenarios. When it is difficult to enhance the recognition algorithm, we choose super-resolution (SR) to improve the quality of license plate images and thereby provide clearer input for the subsequent recognition stage. In this paper, we propose an automatic super-resolution license plate recognition (SRLPR) network which consists of four parts separately: license plate detection, character detection, single character super-resolution, and recognition. In the training stage, firstly, LP detection model needs to be trained alone and then its detection results will be used to successively train the three subsequent modules. During the test phase, for each input image, the network can get its LP number automatically. We also collect an applicable and challenging LPR dataset called SRLP, which is collected from real remote traffic surveillance. The experimental results demonstrate that our method achieves comprehensive quality of SR images and higher recognition accuracy compared with state-of-the-art methods. The SRLP dataset and the code for training and testing SRLPR network are available at https://pan.baidu.com/s/1vnhRa-c-dBj6jlfBZV5w4g.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeroayanami0发布了新的文献求助10
1秒前
啦啦啦完成签到 ,获得积分10
2秒前
传奇3应助称心不尤采纳,获得10
3秒前
LY完成签到,获得积分20
4秒前
FOREST完成签到,获得积分10
4秒前
恋恋青葡萄完成签到,获得积分10
5秒前
卷卷酱完成签到,获得积分20
5秒前
zeroayanami0完成签到,获得积分10
6秒前
hhh完成签到,获得积分10
8秒前
befire发布了新的文献求助10
9秒前
彭于晏应助成和车车采纳,获得10
9秒前
不配.应助飘逸的白玉采纳,获得10
10秒前
ZIS完成签到,获得积分10
13秒前
务实饼干应助科研通管家采纳,获得30
13秒前
思源应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
0128lun应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
17秒前
研友_Zlepz8完成签到,获得积分0
17秒前
19秒前
Singularity举报闹闹求助涉嫌违规
19秒前
缓慢的饼干完成签到,获得积分10
25秒前
称心不尤发布了新的文献求助10
26秒前
30秒前
佳远完成签到,获得积分10
32秒前
33秒前
不配.应助闪闪的白易采纳,获得10
33秒前
研友_VZG7GZ应助stay采纳,获得10
33秒前
母广明发布了新的文献求助10
34秒前
123456完成签到,获得积分20
35秒前
孟冬发布了新的文献求助10
35秒前
Shaewei完成签到,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138572
求助须知:如何正确求助?哪些是违规求助? 2789520
关于积分的说明 7791526
捐赠科研通 2445903
什么是DOI,文献DOI怎么找? 1300715
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079