MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder

计算机科学 自编码 人工智能 核(代数) 图形 机器学习 深度学习 理论计算机科学 数学 组合数学
作者
Ying Wang,Ying-Lian Gao,Juan Wang,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3686-3694 被引量:7
标识
DOI:10.1109/jbhi.2023.3272154
摘要

Identifying drug-disease associations (DDAs) is critical to the development of drugs. Traditional methods to determine DDAs are expensive and inefficient. Therefore, it is imperative to develop more accurate and effective methods for DDAs prediction. Most current DDAs prediction methods utilize original DDAs matrix directly. However, the original DDAs matrix is sparse, which greatly affects the prediction consequences. Hence, a prediction method based on multi-similarities graph convolutional autoencoder (MSGCA) is proposed for DDAs prediction. First, MSGCA integrates multiple drug similarities and disease similarities using centered kernel alignment-based multiple kernel learning (CKA-MKL) algorithm to form new drug similarity and disease similarity, respectively. Second, the new drug and disease similarities are improved by linear neighborhood, and the DDAs matrix is reconstructed by weighted K nearest neighbor profiles. Next, the reconstructed DDAs and the improved drug and disease similarities are integrated into a heterogeneous network. Finally, the graph convolutional autoencoder with attention mechanism is utilized to predict DDAs. Compared with extant methods, MSGCA shows superior results on three datasets. Furthermore, case studies further demonstrate the reliability of MSGCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
wugang完成签到 ,获得积分10
2秒前
2秒前
3秒前
袁保蓉发布了新的文献求助10
3秒前
Volume发布了新的文献求助10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得50
4秒前
诗谙完成签到,获得积分10
4秒前
laber应助科研通管家采纳,获得50
4秒前
无花果应助科研通管家采纳,获得10
4秒前
尹梦成应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
chenqiumu应助科研通管家采纳,获得50
5秒前
89757发布了新的文献求助20
5秒前
ding应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得30
5秒前
Anhber应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
dew应助科研通管家采纳,获得10
6秒前
chenqiumu应助科研通管家采纳,获得30
6秒前
尹梦成应助科研通管家采纳,获得10
6秒前
单薄雪柳应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
23333完成签到,获得积分20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
dew应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719