MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder

计算机科学 自编码 人工智能 核(代数) 图形 机器学习 深度学习 理论计算机科学 数学 组合数学
作者
Ying Wang,Ying-Lian Gao,Juan Wang,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3686-3694 被引量:7
标识
DOI:10.1109/jbhi.2023.3272154
摘要

Identifying drug-disease associations (DDAs) is critical to the development of drugs. Traditional methods to determine DDAs are expensive and inefficient. Therefore, it is imperative to develop more accurate and effective methods for DDAs prediction. Most current DDAs prediction methods utilize original DDAs matrix directly. However, the original DDAs matrix is sparse, which greatly affects the prediction consequences. Hence, a prediction method based on multi-similarities graph convolutional autoencoder (MSGCA) is proposed for DDAs prediction. First, MSGCA integrates multiple drug similarities and disease similarities using centered kernel alignment-based multiple kernel learning (CKA-MKL) algorithm to form new drug similarity and disease similarity, respectively. Second, the new drug and disease similarities are improved by linear neighborhood, and the DDAs matrix is reconstructed by weighted K nearest neighbor profiles. Next, the reconstructed DDAs and the improved drug and disease similarities are integrated into a heterogeneous network. Finally, the graph convolutional autoencoder with attention mechanism is utilized to predict DDAs. Compared with extant methods, MSGCA shows superior results on three datasets. Furthermore, case studies further demonstrate the reliability of MSGCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PEAR发布了新的文献求助10
刚刚
远望发布了新的文献求助10
刚刚
搞怪莫茗应助梦想采纳,获得10
刚刚
英姑应助wjx采纳,获得10
1秒前
深情安青应助wjx采纳,获得20
1秒前
打打应助wjx采纳,获得10
1秒前
CodeCraft应助wjx采纳,获得10
1秒前
脑洞疼应助wjx采纳,获得10
1秒前
CCCcc完成签到,获得积分10
1秒前
1秒前
李健应助满意水瑶采纳,获得10
2秒前
sz发布了新的文献求助10
2秒前
wu发布了新的文献求助10
3秒前
5秒前
ypyue发布了新的文献求助10
5秒前
赘婿应助lsn采纳,获得10
6秒前
研友_VZG7GZ应助sunset5min采纳,获得10
8秒前
威武又柔完成签到,获得积分10
8秒前
朱巴子完成签到,获得积分10
9秒前
善学以致用应助wjx采纳,获得10
10秒前
完美世界应助wjx采纳,获得20
10秒前
Ava应助wjx采纳,获得10
10秒前
汉堡包应助wjx采纳,获得10
10秒前
Orange应助wjx采纳,获得10
10秒前
汉堡包应助wjx采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
FashionBoy应助lcpppppp采纳,获得10
10秒前
上官若男应助wjx采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
我是老大应助wjx采纳,获得10
11秒前
鸣笛应助科研通管家采纳,获得20
11秒前
SciGPT应助wjx采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
无花果应助wjx采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
han发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
英俊的铭应助Eclipseee采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019