MSGCA: Drug-Disease Associations Prediction Based on Multi-Similarities Graph Convolutional Autoencoder

计算机科学 自编码 人工智能 核(代数) 图形 机器学习 深度学习 理论计算机科学 数学 组合数学
作者
Ying Wang,Ying-Lian Gao,Juan Wang,Feng Li,Jin‐Xing Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3686-3694 被引量:7
标识
DOI:10.1109/jbhi.2023.3272154
摘要

Identifying drug-disease associations (DDAs) is critical to the development of drugs. Traditional methods to determine DDAs are expensive and inefficient. Therefore, it is imperative to develop more accurate and effective methods for DDAs prediction. Most current DDAs prediction methods utilize original DDAs matrix directly. However, the original DDAs matrix is sparse, which greatly affects the prediction consequences. Hence, a prediction method based on multi-similarities graph convolutional autoencoder (MSGCA) is proposed for DDAs prediction. First, MSGCA integrates multiple drug similarities and disease similarities using centered kernel alignment-based multiple kernel learning (CKA-MKL) algorithm to form new drug similarity and disease similarity, respectively. Second, the new drug and disease similarities are improved by linear neighborhood, and the DDAs matrix is reconstructed by weighted K nearest neighbor profiles. Next, the reconstructed DDAs and the improved drug and disease similarities are integrated into a heterogeneous network. Finally, the graph convolutional autoencoder with attention mechanism is utilized to predict DDAs. Compared with extant methods, MSGCA shows superior results on three datasets. Furthermore, case studies further demonstrate the reliability of MSGCA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助正直胡萝卜采纳,获得20
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
yang发布了新的文献求助10
1秒前
4秒前
4秒前
4秒前
歪比巴卜完成签到,获得积分10
5秒前
7秒前
爱撒娇的大白菜真实的钥匙完成签到 ,获得积分10
8秒前
123发布了新的文献求助10
9秒前
幽凡发布了新的文献求助10
9秒前
秋水发布了新的文献求助10
9秒前
9秒前
10秒前
星辰大海应助ju00采纳,获得10
10秒前
善学以致用应助ju00采纳,获得10
10秒前
顾矜应助ju00采纳,获得10
10秒前
6666应助ju00采纳,获得10
10秒前
文艺的洋葱完成签到,获得积分10
10秒前
所所应助ju00采纳,获得50
10秒前
科研通AI6应助ju00采纳,获得30
10秒前
10秒前
10秒前
11秒前
默默的如豹完成签到,获得积分10
11秒前
11秒前
共享精神应助粗暴的嫣娆采纳,获得10
11秒前
Wind应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
繁星长明应助科研通管家采纳,获得10
13秒前
magiczhu完成签到,获得积分10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
Wind应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578642
求助须知:如何正确求助?哪些是违规求助? 4663442
关于积分的说明 14746667
捐赠科研通 4604316
什么是DOI,文献DOI怎么找? 2526915
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465795