AI/ML Based 100X Faster Thermal Analysis Methodology With 95% Accuracy

计算机科学 计算 还原(数学) 热的 散热片 可靠性工程 模拟 机械工程 工程类 算法 物理 几何学 数学 气象学
作者
Saravanakumar Mahalingam,Jitendra Gandrakota,Ananth Prabhu,Sendhil A Kumar,Rajesh Jayaram,Biswajit Patra
标识
DOI:10.1109/icee56203.2022.10118062
摘要

The new generation SOCs requires a thermal solution to maintain temperatures within operating limits. Design and optimization of suitable thermal solution and upfront thermal analysis are key to design thermal friendly design based on all critical workloads in very fast manner. There are two common methods of predicting SOC thermal performance: computational simulation and experimental measurement. These two approaches include complicated operations and experimental setup. Thus, it is quite difficult to build computational simulations that fully capture the complex logical relationships between the properties of a material, geometry, power and their related factors, and some of these relationships may even be unknown. Therefore, there is an urgent need to develop intelligent and high-performance prediction models that can correctly predict the SOC thermal solution at a low temporal and computational cost. In this work, a new methodology for optimization of SOC Thermal Performance process is developed, using Regression-Based Reduced-Order Modelling Techniques. This methodology can be applied to any type of platform configurations to reduce computation effort, results reduction in overall design time and cost. Also, this approach (Implemented through software applications-tool) can be deployed internally as well as customer experience thermal tool, allows customers to predict the optimum thermal solutions tailored to their project requirements. This tool is developed using blending different regression models for better prediction of SOC thermal performance, it comprises different types of heat sink models (extruded, folded fin, heat pipe embedded, and vapor chamber) allows user to select right tradeoff between performance and cost. In this work, a new methodology to estimate thermal performance analysis is demonstrated for complex inhouse SOC with about 100X faster and with about 95% accurate reference to industry solutions available. In this analysis all data are normalized to ensure sensitive design details are protected
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
终成院士完成签到,获得积分10
1秒前
1秒前
ybma完成签到 ,获得积分10
2秒前
4秒前
Grool发布了新的文献求助30
4秒前
5秒前
领导范儿应助catear采纳,获得10
6秒前
6秒前
pu完成签到 ,获得积分10
7秒前
7秒前
8秒前
亭子完成签到,获得积分10
8秒前
夏老师发布了新的文献求助10
10秒前
10秒前
怜梦发布了新的文献求助10
11秒前
11秒前
13秒前
整齐芷文完成签到,获得积分10
13秒前
毛豆应助东东呀采纳,获得10
13秒前
14秒前
小小小小璿完成签到,获得积分10
14秒前
害羞发带发布了新的文献求助10
14秒前
Lucie发布了新的文献求助10
15秒前
15秒前
阳光怀亦发布了新的文献求助10
15秒前
指导灰完成签到 ,获得积分10
16秒前
dyyy发布了新的文献求助30
16秒前
严溯完成签到,获得积分10
16秒前
DQ2pi完成签到,获得积分10
17秒前
杳鸢应助啊噢采纳,获得30
18秒前
hhhhhh发布了新的文献求助10
19秒前
19秒前
19秒前
落骛完成签到,获得积分10
20秒前
成就铸海完成签到,获得积分10
20秒前
kld完成签到,获得积分10
22秒前
敏感蓝天关注了科研通微信公众号
22秒前
SciGPT应助gengyining采纳,获得10
22秒前
香蕉觅云应助scienceL采纳,获得10
24秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462807
求助须知:如何正确求助?哪些是违规求助? 3056372
关于积分的说明 9051665
捐赠科研通 2746018
什么是DOI,文献DOI怎么找? 1506751
科研通“疑难数据库(出版商)”最低求助积分说明 696202
邀请新用户注册赠送积分活动 695740