材料科学
薄膜晶体管
光电子学
CMOS芯片
阈值电压
工作职能
兴奋剂
晶体管
半导体
碳纳米管
纳米技术
电气工程
电压
工程类
图层(电子)
作者
Min Li,Yuxiao Fang,Shuangshuang Shao,Xin Wang,Zhaofeng Chen,Jiaqi Li,Weibing Gu,Wenming Yang,Wanzhen Xu,Hua Wang,Jianwen Zhao
出处
期刊:Small
[Wiley]
日期:2023-02-13
卷期号:19 (20)
被引量:7
标识
DOI:10.1002/smll.202207311
摘要
The threshold voltage (Vth ) adjustment of complementary metal-oxide-semiconductor (CMOS) thin film transistors (TFTs) is one of the research hotspots due to its key role in energy consumption control of CMOS circuits. Here, ultralow-power flexible CMOS circuits based on well-matched enhancement-mode (E-mode) CMOS single-walled carbon nanotube (SWCNT) TFTs are successfully achieved through tuning the work function of gate electrodes, electron doping, and printing techniques. E-mode P-type CMOS SWCNT TFTs with the full-solution procedure are first obtained through decreasing the work function of Ag gate electrodes directly caused by the deposition of bismuth iodide (BiI3 )-doped solid-state electrolyte dielectrics. After synthetic optimization of dielectric compositions and semiconductor printing process, the flexible printed E-mode SWCNT TFTs show the high Ion /Ioff ratios of ≈106 , small subthreshold swing (SS) of 70-85 mV dec-1 , low operating voltages of ≈0.5 to -1.5 V, good stability and excellent mechanical flexibility during 10 000 bending cycles. E-mode N-type SWCNT TFTs are then selectively achieved via printing the polarity conversion ink (2-Amino-2-methyl-1-propanol (AMP) as electron doping agent) in P- type TFT channels. Last, printed SWCNT CMOS inverters are successfully constructed with full rail-to-rail output characteristics and the record unit static power consumption of 6.75 fW µm-1 at VDD of 0.2 V.
科研通智能强力驱动
Strongly Powered by AbleSci AI