Prediction of Composite Mechanical Properties: Integration of Deep Neural Network Methods and Finite Element Analysis

有限元法 模数 复合数 残差神经网络 泊松比 人工神经网络 材料科学 桥接(联网) 杨氏模量 计算机科学 泊松分布 复合材料 弹性模量 人工智能 结构工程 数学 工程类 统计 计算机网络
作者
Kimia Gholami,Faraz Ege,Ramin Barzegar
出处
期刊:Journal of composites science [MDPI AG]
卷期号:7 (2): 54-54 被引量:6
标识
DOI:10.3390/jcs7020054
摘要

Extracting the mechanical properties of a composite hydrogel; e.g., bioglass (BG)–collagen (COL), is often difficult due to the complexity of the experimental procedure. BGs could be embedded in the COL and thereby improve the mechanical properties of COL for bone tissue engineering applications. This paper proposed a deep-learning-based approach to extract the mechanical properties of a composite hydrogel directly from the microstructural images. Four datasets of various shapes of BGs (9000 2D images) generated by a finite element analysis showed that the deep neural network (DNN) model could efficiently predict the mechanical properties of the composite hydrogel, including the Young’s modulus and Poisson’s ratio. ResNet and AlexNet architecture were tuned to ensure the excellent performance and high accuracy of the proposed methods with R-values greater than 0.99 and a mean absolute error of the prediction of less than 7%. The results for the full dataset revealed that AlexNet had a better performance than ResNet in predicting the elastic material properties of BGs-COL with R-values of 0.99 and 0.97 compared to 0.97 and 0.96 for the Young’s modulus and Poisson’s ratio, respectively. This work provided bridging methods to combine a finite element analysis and a DNN for applications in diverse fields such as tissue engineering, materials science, and medical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安陌煜发布了新的文献求助30
1秒前
桐桐应助Sifan采纳,获得10
1秒前
1秒前
KKKkkkkk发布了新的文献求助10
2秒前
2秒前
希望天下0贩的0应助无000采纳,获得10
2秒前
2秒前
34完成签到,获得积分10
2秒前
4秒前
4秒前
卡皮巴拉发布了新的文献求助10
4秒前
7秒前
圣光之城发布了新的文献求助10
7秒前
cqnusq发布了新的文献求助30
8秒前
9秒前
hjx完成签到 ,获得积分10
10秒前
Math123发布了新的文献求助10
12秒前
情怀应助张对对采纳,获得10
12秒前
意安发布了新的文献求助10
13秒前
14秒前
14秒前
Gjq完成签到 ,获得积分10
15秒前
16秒前
嗯呢发布了新的文献求助10
16秒前
17秒前
脑洞疼应助KKKkkkkk采纳,获得10
18秒前
上官若男应助揽星色采纳,获得10
18秒前
充电宝应助晶晶妹妹采纳,获得10
20秒前
三金发布了新的文献求助10
21秒前
小女完成签到,获得积分20
21秒前
礼帽发布了新的文献求助10
21秒前
xuhailong发布了新的文献求助10
22秒前
22秒前
顾矜应助月亮是甜的采纳,获得10
22秒前
慕青应助小柚子采纳,获得10
22秒前
ovo完成签到,获得积分10
22秒前
23秒前
24秒前
ZXB完成签到,获得积分10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644