已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fully Convolutional Change Detection Framework With Generative Adversarial Network for Unsupervised, Weakly Supervised and Regional Supervised Change Detection

变更检测 计算机科学 鉴别器 人工智能 模式识别(心理学) 监督学习 无监督学习 机器学习 发电机(电路理论) 人工神经网络 电信 功率(物理) 物理 量子力学 探测器
作者
Chen Wu,Bo Du,Liangpei Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9774-9788 被引量:20
标识
DOI:10.1109/tpami.2023.3237896
摘要

Deep learning for change detection is one of the current hot topics in the field of remote sensing. However, most end-to-end networks are proposed for supervised change detection, and unsupervised change detection models depend on traditional pre-detection methods. Therefore, we proposed a fully convolutional change detection framework with generative adversarial network, to unify unsupervised, weakly supervised, regional supervised, and fully supervised change detection tasks into one end-to-end framework. A basic Unet segmentor is used to obtain change detection map, an image-to-image generator is implemented to model the spectral and spatial variation between multi-temporal images, and a discriminator for changed and unchanged is proposed for modeling the semantic changes in weakly and regional supervised change detection task. The iterative optimization of segmentor and generator can build an end-to-end network for unsupervised change detection, the adversarial process between segmentor and discriminator can provide the solutions for weakly and regional supervised change detection, the segmentor itself can be trained for fully supervised task. The experiments indicate the effectiveness of the propsed framework in unsupervised, weakly supervised and regional supervised change detection. This article provides new theorical definitions for unsupervised, weakly supervised and regional supervised change detection tasks with the proposed framework, and shows great potentials in exploring end-to-end network for remote sensing change detection ( https://github.com/Cwuwhu/FCD-GAN-pytorch ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyh发布了新的文献求助10
刚刚
安静元槐发布了新的文献求助10
刚刚
relexer完成签到 ,获得积分10
刚刚
1秒前
1秒前
熄熄发布了新的文献求助30
2秒前
混世魔王给混世魔王的求助进行了留言
2秒前
gstaihn完成签到,获得积分10
3秒前
lapidary完成签到,获得积分10
3秒前
5秒前
Hello应助嘉禾瑶采纳,获得10
6秒前
酷炫小馒头完成签到,获得积分10
7秒前
JamesPei应助安静元槐采纳,获得10
8秒前
Karol发布了新的文献求助10
8秒前
小二郎应助是木易呀采纳,获得10
11秒前
Karol完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
完美世界应助江湖浪子采纳,获得10
16秒前
海口天空发布了新的文献求助10
17秒前
17秒前
18秒前
平常的冷之完成签到,获得积分10
19秒前
19秒前
lyt完成签到,获得积分10
20秒前
21秒前
儒雅老太发布了新的文献求助10
22秒前
jasmine970000完成签到 ,获得积分10
22秒前
23秒前
lyt发布了新的文献求助10
24秒前
25秒前
26秒前
28秒前
啊z应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009