LN-Net: Perfusion Pattern-Guided Deep Learning for Lymph Node Metastasis Diagnosis Based on Contrast-Enhanced Ultrasound Videos

超声造影 计算机科学 人工智能 放射科 血流 灌注 模式识别(心理学) 淋巴结 超声波 医学 特征(语言学) 淋巴 病理 语言学 哲学
作者
Hui Yu,Xiaoyun Liang,Mengrui Zhang,Yinuo Fan,Guangpu Wang,Shuo Wang,Jinglai Sun,Jie Zhang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:49 (5): 1248-1258 被引量:2
标识
DOI:10.1016/j.ultrasmedbio.2023.01.010
摘要

Objective The blood flow in lymph nodes reflects important pathological features. However, most intelligent diagnosis based on contrast-enhanced ultrasound (CEUS) video focuses only on CEUS images, ignoring the process of extracting blood flow information. In the work described here, a parametric imaging method for describing blood perfusion pattern was proposed and a multimodal network (LN-Net) to predict lymph node metastasis was designed. Methods First, the commercially available artificial intelligence object detection model YOLOv5 was improved to detect the lymph node region. Then the correlation and inflection point matching algorithms were combined to calculate the parameters of the perfusion pattern. Finally, the Inception-V3 architecture was used to extract the image features of each modality, with the blood perfusion pattern taken as the guiding factor in fusing the features with CEUS by sub-network weighting. Discussion The average precision of the improved YOLOv5s algorithm compared with baseline was improved by 5.8%. LN-Net predicted lymph node metastasis with 84.9% accuracy, 83.7% precision and 80.3% recall. Compared with the model without blood flow feature guidance, accuracy was improved by 2.6%. The intelligent diagnosis method has good clinical interpretability. Conclusion A static parametric imaging map could describe a dynamic blood flow perfusion pattern, and as a guiding factor, it could improve the classification ability of the model with respect to lymph node metastasis. The blood flow in lymph nodes reflects important pathological features. However, most intelligent diagnosis based on contrast-enhanced ultrasound (CEUS) video focuses only on CEUS images, ignoring the process of extracting blood flow information. In the work described here, a parametric imaging method for describing blood perfusion pattern was proposed and a multimodal network (LN-Net) to predict lymph node metastasis was designed. First, the commercially available artificial intelligence object detection model YOLOv5 was improved to detect the lymph node region. Then the correlation and inflection point matching algorithms were combined to calculate the parameters of the perfusion pattern. Finally, the Inception-V3 architecture was used to extract the image features of each modality, with the blood perfusion pattern taken as the guiding factor in fusing the features with CEUS by sub-network weighting. The average precision of the improved YOLOv5s algorithm compared with baseline was improved by 5.8%. LN-Net predicted lymph node metastasis with 84.9% accuracy, 83.7% precision and 80.3% recall. Compared with the model without blood flow feature guidance, accuracy was improved by 2.6%. The intelligent diagnosis method has good clinical interpretability. A static parametric imaging map could describe a dynamic blood flow perfusion pattern, and as a guiding factor, it could improve the classification ability of the model with respect to lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助呼延傲薇采纳,获得10
刚刚
阔达荣轩发布了新的文献求助10
刚刚
翎_完成签到 ,获得积分10
1秒前
1937完成签到,获得积分20
1秒前
1秒前
xiaoxiao完成签到,获得积分10
2秒前
hzauhzau发布了新的文献求助10
3秒前
geqian发布了新的文献求助10
3秒前
4秒前
忍冬完成签到,获得积分10
4秒前
可爱的函函应助飞飞采纳,获得10
4秒前
4秒前
hhhhhhh完成签到,获得积分10
4秒前
5秒前
5秒前
Sekaiwa完成签到,获得积分10
6秒前
小颉江二郎完成签到,获得积分10
7秒前
7秒前
安和桥北发布了新的文献求助20
7秒前
hututu发布了新的文献求助10
7秒前
务实鞅完成签到 ,获得积分10
8秒前
LmaPN7发布了新的文献求助20
8秒前
8秒前
跳跃火车发布了新的文献求助10
9秒前
9秒前
10秒前
故意的成协完成签到 ,获得积分20
10秒前
合适的璎发布了新的文献求助30
11秒前
简单的易云完成签到,获得积分10
13秒前
小李发布了新的文献求助10
13秒前
13秒前
飞飞完成签到,获得积分10
14秒前
务实的筝发布了新的文献求助10
14秒前
15秒前
12完成签到,获得积分10
15秒前
zfy完成签到,获得积分20
15秒前
lzg完成签到,获得积分10
16秒前
正直的松鼠完成签到 ,获得积分10
16秒前
开心完成签到,获得积分10
17秒前
斯文的子默完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303861
求助须知:如何正确求助?哪些是违规求助? 2938039
关于积分的说明 8485855
捐赠科研通 2611997
什么是DOI,文献DOI怎么找? 1426470
科研通“疑难数据库(出版商)”最低求助积分说明 662641
邀请新用户注册赠送积分活动 647245