LN-Net: Perfusion Pattern-Guided Deep Learning for Lymph Node Metastasis Diagnosis Based on Contrast-Enhanced Ultrasound Videos

超声造影 计算机科学 人工智能 放射科 血流 灌注 模式识别(心理学) 淋巴结 超声波 医学 特征(语言学) 淋巴 病理 语言学 哲学
作者
Hui Yu,Xiaoyun Liang,Mengrui Zhang,Yinuo Fan,Guangpu Wang,Shuo Wang,Jinglai Sun,Jie Zhang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:49 (5): 1248-1258 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2023.01.010
摘要

Objective The blood flow in lymph nodes reflects important pathological features. However, most intelligent diagnosis based on contrast-enhanced ultrasound (CEUS) video focuses only on CEUS images, ignoring the process of extracting blood flow information. In the work described here, a parametric imaging method for describing blood perfusion pattern was proposed and a multimodal network (LN-Net) to predict lymph node metastasis was designed. Methods First, the commercially available artificial intelligence object detection model YOLOv5 was improved to detect the lymph node region. Then the correlation and inflection point matching algorithms were combined to calculate the parameters of the perfusion pattern. Finally, the Inception-V3 architecture was used to extract the image features of each modality, with the blood perfusion pattern taken as the guiding factor in fusing the features with CEUS by sub-network weighting. Discussion The average precision of the improved YOLOv5s algorithm compared with baseline was improved by 5.8%. LN-Net predicted lymph node metastasis with 84.9% accuracy, 83.7% precision and 80.3% recall. Compared with the model without blood flow feature guidance, accuracy was improved by 2.6%. The intelligent diagnosis method has good clinical interpretability. Conclusion A static parametric imaging map could describe a dynamic blood flow perfusion pattern, and as a guiding factor, it could improve the classification ability of the model with respect to lymph node metastasis. The blood flow in lymph nodes reflects important pathological features. However, most intelligent diagnosis based on contrast-enhanced ultrasound (CEUS) video focuses only on CEUS images, ignoring the process of extracting blood flow information. In the work described here, a parametric imaging method for describing blood perfusion pattern was proposed and a multimodal network (LN-Net) to predict lymph node metastasis was designed. First, the commercially available artificial intelligence object detection model YOLOv5 was improved to detect the lymph node region. Then the correlation and inflection point matching algorithms were combined to calculate the parameters of the perfusion pattern. Finally, the Inception-V3 architecture was used to extract the image features of each modality, with the blood perfusion pattern taken as the guiding factor in fusing the features with CEUS by sub-network weighting. The average precision of the improved YOLOv5s algorithm compared with baseline was improved by 5.8%. LN-Net predicted lymph node metastasis with 84.9% accuracy, 83.7% precision and 80.3% recall. Compared with the model without blood flow feature guidance, accuracy was improved by 2.6%. The intelligent diagnosis method has good clinical interpretability. A static parametric imaging map could describe a dynamic blood flow perfusion pattern, and as a guiding factor, it could improve the classification ability of the model with respect to lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joejo1124发布了新的文献求助30
4秒前
认真的傲柏完成签到,获得积分10
5秒前
无花果应助留白留白采纳,获得10
6秒前
钱俊完成签到,获得积分10
10秒前
华仔应助无奈睫毛膏采纳,获得30
11秒前
科研通AI2S应助李李李采纳,获得10
13秒前
小蘑菇应助700w采纳,获得30
14秒前
我是老大应助yue采纳,获得20
16秒前
家若完成签到 ,获得积分10
16秒前
陶帅帅发布了新的文献求助10
19秒前
ll完成签到 ,获得积分10
20秒前
雨中石发布了新的文献求助10
21秒前
23秒前
无奈睫毛膏完成签到,获得积分20
23秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
苏氨酸应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得20
27秒前
星辰大海应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
29秒前
Rick发布了新的文献求助10
29秒前
123456完成签到 ,获得积分10
30秒前
隐形曼青应助小玉采纳,获得10
30秒前
30秒前
闪闪的从彤完成签到 ,获得积分10
31秒前
雨中石完成签到,获得积分10
31秒前
浑灵安完成签到 ,获得积分10
33秒前
35秒前
huxley1121发布了新的文献求助10
36秒前
36秒前
照照发布了新的文献求助10
37秒前
37秒前
imprint完成签到 ,获得积分10
38秒前
拼搏梦旋完成签到,获得积分10
39秒前
雪梅完成签到 ,获得积分10
39秒前
40秒前
Rick完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652