LN-Net: Perfusion Pattern-Guided Deep Learning for Lymph Node Metastasis Diagnosis Based on Contrast-Enhanced Ultrasound Videos

超声造影 计算机科学 人工智能 放射科 血流 灌注 模式识别(心理学) 淋巴结 超声波 医学 特征(语言学) 淋巴 病理 语言学 哲学
作者
Hui Yu,Xiaoyun Liang,Mengrui Zhang,Yinuo Fan,Guangpu Wang,Shuo Wang,Jinglai Sun,Jie Zhang
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:49 (5): 1248-1258 被引量:4
标识
DOI:10.1016/j.ultrasmedbio.2023.01.010
摘要

Objective The blood flow in lymph nodes reflects important pathological features. However, most intelligent diagnosis based on contrast-enhanced ultrasound (CEUS) video focuses only on CEUS images, ignoring the process of extracting blood flow information. In the work described here, a parametric imaging method for describing blood perfusion pattern was proposed and a multimodal network (LN-Net) to predict lymph node metastasis was designed. Methods First, the commercially available artificial intelligence object detection model YOLOv5 was improved to detect the lymph node region. Then the correlation and inflection point matching algorithms were combined to calculate the parameters of the perfusion pattern. Finally, the Inception-V3 architecture was used to extract the image features of each modality, with the blood perfusion pattern taken as the guiding factor in fusing the features with CEUS by sub-network weighting. Discussion The average precision of the improved YOLOv5s algorithm compared with baseline was improved by 5.8%. LN-Net predicted lymph node metastasis with 84.9% accuracy, 83.7% precision and 80.3% recall. Compared with the model without blood flow feature guidance, accuracy was improved by 2.6%. The intelligent diagnosis method has good clinical interpretability. Conclusion A static parametric imaging map could describe a dynamic blood flow perfusion pattern, and as a guiding factor, it could improve the classification ability of the model with respect to lymph node metastasis. The blood flow in lymph nodes reflects important pathological features. However, most intelligent diagnosis based on contrast-enhanced ultrasound (CEUS) video focuses only on CEUS images, ignoring the process of extracting blood flow information. In the work described here, a parametric imaging method for describing blood perfusion pattern was proposed and a multimodal network (LN-Net) to predict lymph node metastasis was designed. First, the commercially available artificial intelligence object detection model YOLOv5 was improved to detect the lymph node region. Then the correlation and inflection point matching algorithms were combined to calculate the parameters of the perfusion pattern. Finally, the Inception-V3 architecture was used to extract the image features of each modality, with the blood perfusion pattern taken as the guiding factor in fusing the features with CEUS by sub-network weighting. The average precision of the improved YOLOv5s algorithm compared with baseline was improved by 5.8%. LN-Net predicted lymph node metastasis with 84.9% accuracy, 83.7% precision and 80.3% recall. Compared with the model without blood flow feature guidance, accuracy was improved by 2.6%. The intelligent diagnosis method has good clinical interpretability. A static parametric imaging map could describe a dynamic blood flow perfusion pattern, and as a guiding factor, it could improve the classification ability of the model with respect to lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
思源应助ardejiang采纳,获得10
4秒前
不安枕头发布了新的文献求助10
5秒前
椰子发布了新的文献求助10
5秒前
13280939791完成签到,获得积分10
7秒前
叶光大完成签到 ,获得积分10
7秒前
8秒前
小远远完成签到,获得积分10
9秒前
fu完成签到,获得积分10
9秒前
Evan123完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
不想看文献完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
13280939791发布了新的文献求助10
11秒前
CipherSage应助linn采纳,获得10
12秒前
12秒前
周涛发布了新的文献求助30
13秒前
14秒前
小红书求接接接接一篇完成签到,获得积分20
15秒前
Sara发布了新的文献求助10
15秒前
Even发布了新的文献求助10
15秒前
16秒前
畅快的一鸣完成签到 ,获得积分10
16秒前
清野完成签到,获得积分10
17秒前
fffff发布了新的文献求助10
17秒前
17秒前
憨憨发布了新的文献求助10
18秒前
BarryK关注了科研通微信公众号
18秒前
cqnuly发布了新的文献求助10
19秒前
上官若男应助123采纳,获得10
20秒前
777发布了新的文献求助10
20秒前
科研通AI2S应助欢喜的天空采纳,获得10
20秒前
fcxzvb发布了新的文献求助30
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633748
求助须知:如何正确求助?哪些是违规求助? 4029579
关于积分的说明 12467677
捐赠科研通 3715862
什么是DOI,文献DOI怎么找? 2050393
邀请新用户注册赠送积分活动 1081949
科研通“疑难数据库(出版商)”最低求助积分说明 964173